2022-11-11 14:39:48 +01:00
|
|
|
#include "scene/scene.h"
|
|
|
|
#include "shader/refractionshader.h"
|
|
|
|
|
2023-01-24 21:11:30 +01:00
|
|
|
RefractionShader::RefractionShader(float indexInside, float indexOutside, Color const &objectColor, float lightLoss)
|
|
|
|
: indexInside(
|
2023-01-24 20:23:16 +01:00
|
|
|
indexInside), indexOutside(indexOutside), objectColor(objectColor), lightLoss(lightLoss)
|
2023-01-24 19:59:13 +01:00
|
|
|
{}
|
|
|
|
|
|
|
|
Color RefractionShader::shade(Scene const &scene, Ray const &ray) const
|
|
|
|
{
|
|
|
|
// Circumvent getting environment map color into the mix
|
|
|
|
if (ray.getRemainingBounces() > 0)
|
|
|
|
{
|
|
|
|
// Get the normal of the primitive which was hit
|
|
|
|
Vector3d normalVector = ray.normal;
|
|
|
|
|
|
|
|
// Calculate the index of refraction
|
|
|
|
float refractiveIndex = indexOutside / indexInside;
|
|
|
|
// What if we are already inside the object?
|
|
|
|
if (dotProduct(normalVector, ray.direction) > 0)
|
|
|
|
{
|
|
|
|
normalVector = -normalVector;
|
|
|
|
refractiveIndex = indexInside / indexOutside;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Using the notation from the lecture
|
|
|
|
float cosineTheta = dotProduct(normalVector, -ray.direction);
|
|
|
|
float cosinePhi = std::sqrt(1 + refractiveIndex * refractiveIndex * (cosineTheta * cosineTheta - 1));
|
|
|
|
// Calculate t, the new ray direction
|
|
|
|
Vector3d t = refractiveIndex * ray.direction + (refractiveIndex * cosineTheta - cosinePhi) * normalVector;
|
|
|
|
|
|
|
|
// Create the refraction ray
|
|
|
|
Ray refractionRay = ray;
|
|
|
|
// Reset the ray
|
|
|
|
refractionRay.length = INFINITY;
|
|
|
|
refractionRay.primitive = nullptr;
|
|
|
|
|
|
|
|
// Check whether it is a refraction.
|
|
|
|
if (dotProduct(t, normalVector) <= 0.0)
|
|
|
|
{
|
|
|
|
refractionRay.origin = ray.origin + (ray.length + REFR_EPS) * ray.direction;
|
|
|
|
refractionRay.direction = normalized(t);
|
|
|
|
} else
|
|
|
|
{ // Otherwise, it is a total reflection.
|
|
|
|
refractionRay.origin = ray.origin + (ray.length - REFR_EPS) * ray.direction;
|
|
|
|
// Next we get the reflection vector
|
|
|
|
Vector3d const reflectionVector =
|
|
|
|
ray.direction - 2.0f * dotProduct(normalVector, ray.direction) * normalVector;
|
|
|
|
|
|
|
|
// Change the ray direction and origin
|
|
|
|
refractionRay.direction = normalized(reflectionVector);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Send out a new refracted ray into the scene
|
2023-01-24 20:23:16 +01:00
|
|
|
Color hitColor = scene.traceRay(refractionRay);
|
|
|
|
float lightRemaining = 1;
|
2023-01-24 21:11:30 +01:00
|
|
|
if (ray.primitive == refractionRay.primitive) lightRemaining = remainingLightIntensity(refractionRay.length);
|
|
|
|
|
2023-01-24 20:23:16 +01:00
|
|
|
return hitColor * objectColor * lightRemaining;
|
2022-11-18 11:43:53 +01:00
|
|
|
}
|
2023-01-24 19:59:13 +01:00
|
|
|
return Color(0.0f, 0.0f, 0.0f);
|
2022-11-11 14:39:48 +01:00
|
|
|
}
|
|
|
|
|
2023-01-24 21:11:30 +01:00
|
|
|
float RefractionShader::remainingLightIntensity(float distanceThroughObject) const
|
|
|
|
{
|
|
|
|
return 1 - lightLoss + exp(-distanceThroughObject / 10) * lightLoss;
|
|
|
|
}
|
|
|
|
|
2023-01-24 19:59:13 +01:00
|
|
|
bool RefractionShader::isTransparent() const
|
|
|
|
{ return true; }
|
2023-01-24 21:11:30 +01:00
|
|
|
|
|
|
|
Color RefractionShader::transparency(const Scene &scene, const Ray &ray) const
|
|
|
|
{
|
|
|
|
// Determine length through the object
|
|
|
|
Ray lengthRay = ray;
|
|
|
|
// Reset the ray
|
|
|
|
lengthRay.length = INFINITY;
|
|
|
|
lengthRay.primitive = nullptr;
|
|
|
|
lengthRay.origin = ray.origin + (ray.length + REFR_EPS) * ray.direction;
|
|
|
|
|
|
|
|
scene.traceRay(lengthRay);
|
|
|
|
|
|
|
|
float transparencyDistance = std::min(ray.length, lengthRay.length);
|
|
|
|
float lightRemaining = 1;
|
|
|
|
if (ray.primitive == lengthRay.primitive) lightRemaining = remainingLightIntensity(transparencyDistance);
|
|
|
|
|
|
|
|
return objectColor * lightRemaining;
|
|
|
|
}
|