Merge remote-tracking branch 'origin/master'

This commit is contained in:
m.gaedke 2023-01-29 18:17:55 +01:00
commit 2d996602a4
10 changed files with 204 additions and 80 deletions

View file

@ -23,45 +23,57 @@
#include <primitive/triangle.h>
#include <shader/simpleshadowshader.h>
#include <light/sunlight.h>
#include "scene/fastscene.h"
#include "shader/toneshader.h"
int main()
{
int main() {
SimpleScene scene;
scene.setEnvironmentMap(std::make_shared<Texture>("../data/clear_blue_sky.jpg"));
// scene.setEnvironmentMap(std::make_shared<Texture>("../data/TychoSkymapII.t5_04096x02048.png"));
scene.setBackgroundColor(Color(0.1,0.1,0.1));
scene.setBackgroundColor(Color(0.1, 0.1, 0.1));
// Light
auto mainLight = std::make_shared<SunLight>(Vector3d(-6.0f, -0.5f, 2.0f), 2.0f,
Color(1, 1, 1));//Color(1, 0.79f, 0.62f));
scene.add(mainLight);
scene.add(std::make_shared<AmbientLight>(0.1f));
// Set up the camera
PerspectiveCamera camera;
camera.setFovAngle(90.0f);
camera.setPosition(Vector3d(0.0f, -2.0f, -5.0f));
camera.setForwardDirection(Vector3d(1.0f, 0.1f, 0.2f));
camera.setFovAngle(70.0f);
camera.setPosition(Vector3d(0.0f, 1.0f, 0.0f));
camera.setForwardDirection(Vector3d(1.0f, 0.0f, 0.0f));
// Final camera Position
// camera.setPosition(Vector3d(0.0f, -4.9f, 0.0f));
// camera.setForwardDirection(Vector3d(1.0f, 0.2f, 0.0f));
// camera.setPosition(Vector3d(0.0f, -4.9f, 0.0f));
// camera.setForwardDirection(Vector3d(1.0f, 0.2f, 0.0f));
camera.setUpDirection(Vector3d(0.0f, 1.0f, 0.0f));
// Shader
auto gold = std::make_shared<CookTorranceShader>(Color(0.83f, 0.69f, 0.22f), Color(1.0f, 0.08f, 0.58f), 1.2f, 0.2f);
auto green = std::make_shared<ToneShader>(mainLight, Color(1, 1, 1), Color(0.1f, 0.6f, 0.1f), Color(0,0,0));
auto orange = std::make_shared<PhongShader>(Color(1.0f, 0.64f, 0.0f), 1.0f, Color(1.0f, 1.0f, 1.0f), 1.0f, 25.0f);
auto white = std::make_shared<LambertShader>(Color(0.9f, 0.9f, 0.9f));
auto fiona_color = std::make_shared<PhongShader>(Color(0.4f, 1.0f, 0.f), 1.0f, Color(1.0f, 1.0f, 1.0f), 1.0f, 25.0f);
auto white = std::make_shared<SimpleShadowShader>(Color(0.9f, 0.9f, 0.9f));
auto fiona_color = std::make_shared<PhongShader>(Color(0.4f, 1.0f, 0.f), 1.0f, Color(1.0f, 1.0f, 1.0f), 1.0f,
25.0f);
auto mirror = std::make_shared<MirrorShader>();
auto glass = std::make_shared<RefractionShader>(1.31f, 1.0f);
// BRDF
auto gold_metallic_paint2 = std::make_shared<BrdfShader>("../data/BRDF/gold-metallic-paint2.binary", Color(7.0f, 7.0f, 7.0f));
auto alumina_oxide = std::make_shared<BrdfShader>("../data/BRDF/alumina-oxide.binary", Color(7.0f, 7.0f, 7.0f));
auto gold_metallic_paint2 = std::make_shared<BrdfShader>("../data/BRDF/gold-metallic-paint2.binary",
Color(2.0f, 5.0f, 7.0f));
auto alumina_oxide = std::make_shared<BrdfShader>("../data/BRDF/alumina-oxide.binary", Color(7.0f, 0.0f, 5.0f));
auto chrome_steel = std::make_shared<BrdfShader>("../data/BRDF/chrome-steel.binary", Color(0.0f, 7.0f, 2.0f));
// Make Objects
auto house = std::make_shared<ObjModel>(alumina_oxide);
auto temple = std::make_shared<ObjModel>(gold_metallic_paint2);
house->loadObj("../data/NewObjects/house/objBuilding.obj", Vector3d(1.0f, 1.0f, 1.0f), Vector3d(20.0f, -6.0f, 10.0f));
house->loadObj("../data/NewObjects/house/objBuilding.obj", Vector3d(1.0f, 1.0f, 1.0f),
Vector3d(20.0f, -6.0f, 10.0f));
temple->loadObj("../data/NewObjects/Random/Temple.obj", Vector3d(0.1f, 0.1f, 0.1f), Vector3d(30.0f, -6.0f, -10.0f));
@ -74,7 +86,10 @@ int main()
// Add clouds
auto cloudSettings = CloudSettings();
cloudSettings.scale = 16.0f;
cloudSettings.seed = 42;
cloudSettings.lightAbsorptionTowardsLight = 0.6f;
cloudSettings.lightAbsorptionThroughCloud = 1.0f;
cloudSettings.densityOffset = -0.65f;
auto cloudShader = std::make_shared<CloudShader>(cloudSettings);
scene.add(std::make_shared<Box>(Vector3d(30.0f, 10.0f, 0.0f), Vector3d(75.0f, 10.0f, 75.0f), cloudShader));
@ -82,22 +97,15 @@ int main()
// Insert Objects
scene.add(house);
scene.add(temple);
scene.add(std::make_shared<Sphere>(Vector3d(3.0f, -2.0f, -5.0f), 0.5f, mirror));
// Light
auto mainLight = std::make_shared<SunLight>(Vector3d(-10.0f, -0.5f, -1.0f), 2.0f, Color(1,1,1));//Color(1, 0.79f, 0.62f));
scene.add(mainLight);
scene.add(std::make_shared<AmbientLight>(0.1f));
//scene.add(house);
//scene.add(temple);
//scene.add(std::make_shared<Sphere>(Vector3d(3.0f, -2.0f, -5.0f), 0.5f, mirror));
scene.add(std::make_shared<Sphere>(Vector3d(6.0f, -2.0f, -1.0f), 5.0f, green));
// Render
SimpleRenderer rendererTest;
int width = 1920;
Texture imageSceneToTest = rendererTest.renderImage(scene, camera, width, width/16 * 9);
int width = 512;
Texture imageSceneToTest = rendererTest.renderImage(scene, camera, width, width / 16 * 9);
// initialize renderer: aperture = lens thickness, secondaryRayCount = how many rays per pixel are created
// focalLength = the area which is in focus
@ -114,17 +122,17 @@ int main()
*/
// save images
// imageSceneToTest.save("result.png");
// image.save("result.png");
// image.save("resultWithBloom");
imageSceneToTest.save("result1.png");
// image.save("result.png");
// image.save("resultWithBloom");
CImg<float> image = imageSceneToTest.getImage();
CImg<unsigned char> img_8bit(image.width(), image.height(), 1, 3);
cimg_forXYC(image,x,y,c) {
img_8bit(x,y,c) = (unsigned char)std::round(image(x, y, c) * 255);
}
cimg_forXYC(image, x, y, c) {
img_8bit(x, y, c) = (unsigned char) std::round(image(x, y, c) * 255);
}
CImgDisplay disp(img_8bit, "My Rendered Image",0, false, false);
CImgDisplay disp(img_8bit, "My Rendered Image", 0, false, false);
while (!disp.is_closed()) {
disp.wait();
disp.display(img_8bit);

View file

@ -1,21 +1,50 @@
#include <chrono>
#include <iostream>
#include <thread>
#include "cloudnoise.h"
#include "worleynoise.h"
#include "perlinnoise.h"
CloudNoise::CloudNoise(int size, unsigned int seed) : Noise(size)
CloudNoise::CloudNoise(int size, unsigned int seed) : Noise(size), worleyNoise1(WorleyNoise(std::min(LOWRES_SIZE, size), 3, seed)),
worleyNoise3(WorleyNoise(size, 15, seed)),
perlinNoise1(PerlinNoise(std::min(LOWRES_SIZE, size), 3, seed)),
perlinNoise2(PerlinNoise(size, 15, seed))
{
int minSize = std::min(32, size);
// Some worley noises
WorleyNoise worleyNoise1(minSize, 3, seed);
WorleyNoise worleyNoise3(size, 15, seed);
// Some perlin noises
PerlinNoise perlinNoise1(minSize, 3, seed);
PerlinNoise perlinNoise2(size, 15, seed);
auto start = std::chrono::high_resolution_clock::now();
// Generate the noise
for (int x = 0; x < size; x++)
int const nThreads = (int) std::thread::hardware_concurrency() - 1;
int threadSize = std::floor((float) size / (float) nThreads);
int remaining = size - nThreads * threadSize;
std::vector<std::thread> threads;
for (int n = 0; n < nThreads; n++)
{
threads.emplace_back(runCloudNoiseInThread, n * threadSize, threadSize, this);
}
renderNoiseThread(nThreads * threadSize, remaining);
// Rejoin the threads
for (int t = 0; t < nThreads; ++t)
{
threads[t].join();
}
// Duration of computation
auto stop = std::chrono::high_resolution_clock::now();
auto duration = std::chrono::duration_cast<std::chrono::seconds>(stop - start);
std::cout << "Finished computing Cloud noise for size " << size << " in "
<< duration.count() << " seconds" << std::endl;
}
void CloudNoise::runCloudNoiseInThread(int xOffset, int xSize, CloudNoise *noise)
{
noise->renderNoiseThread(xOffset, xSize);
}
void CloudNoise::renderNoiseThread(int xOffset, int xSize)
{
for (int x = xOffset; x < xOffset + xSize; x++)
{
for (int y = 0; y < size; y++)
{

View file

@ -3,6 +3,10 @@
#include "noise.h"
#include "worleynoise.h"
#include "perlinnoise.h"
int const LOWRES_SIZE = 32;
class CloudNoise : public Noise
{
@ -12,7 +16,20 @@ public:
* @param size
* @param seed 0 for random seed
*/
CloudNoise(int size, unsigned int seed = 0);
explicit CloudNoise(int size, unsigned int seed = 0);
void renderNoiseThread(int xOffset, int xSize);
private:
// Some worley noises
WorleyNoise worleyNoise1;
WorleyNoise worleyNoise3;
// Some perlin noises
PerlinNoise perlinNoise1;
PerlinNoise perlinNoise2;
static void runCloudNoiseInThread(int xOffset, int xSize, CloudNoise *noise);
};

View file

@ -1,5 +1,7 @@
#include <random>
#include <algorithm>
#include <thread>
#include <iostream>
#include "perlinnoise.h"
Vector3d PerlinNoise::randomGradient()
@ -72,6 +74,8 @@ PerlinNoise::PerlinNoise(int size, int gridSize, unsigned int seed) : Noise(size
void PerlinNoise::generateNoise()
{
auto start = std::chrono::high_resolution_clock::now();
// Generate gradients
gradients.clear();
gradients.resize(pow(gridSize, 3));
@ -81,15 +85,21 @@ void PerlinNoise::generateNoise()
}
// Generate each pixel
for (int x = 0; x < size; x++)
int const nThreads = (int) std::thread::hardware_concurrency() - 1;
int threadSize = std::floor((float) size / (float) nThreads);
int remaining = size - nThreads * threadSize;
std::vector<std::thread> threads;
for (int n = 0; n < nThreads; n++)
{
for (int y = 0; y < size; y++)
{
for (int z = 0; z < size; z++)
{
setNoise(x, y, z, getGradientValue(x, y, z));
}
}
threads.emplace_back(runPerlinNoiseInThread, n * threadSize, threadSize, this);
}
renderNoiseThread(nThreads * threadSize, remaining);
// Rejoin the threads
for (int t = 0; t < nThreads; ++t)
{
threads[t].join();
}
// Normalize cloudNoise map to [0, 1]
@ -100,6 +110,32 @@ void PerlinNoise::generateNoise()
{
value = (value - min) / (max - min);
});
// Duration of computation
auto stop = std::chrono::high_resolution_clock::now();
auto duration = std::chrono::duration_cast<std::chrono::seconds>(stop - start);
std::cout << "Finished computing Perlin noise for size " << size << " and grid size " << gridSize << " in "
<< duration.count() << " seconds" << std::endl;
}
void PerlinNoise::runPerlinNoiseInThread(int xOffset, int xSize, PerlinNoise *noise)
{
noise->renderNoiseThread(xOffset, xSize);
}
void PerlinNoise::renderNoiseThread(int xOffset, int xSize)
{
for (int x = xOffset; x < xOffset + xSize; x++)
{
for (int y = 0; y < size; y++)
{
for (int z = 0; z < size; z++)
{
setNoise(x, y, z, getGradientValue(x, y, z));
}
}
}
}
float PerlinNoise::getCornerValue(Vector3d position, Vector3d corner)

View file

@ -16,6 +16,7 @@ public:
*/
PerlinNoise(int size, int gridSize, unsigned int seed = 0);
void renderNoiseThread(int xOffset, int xSize);
private:
void generateNoise();
std::normal_distribution<float> distribution;
@ -29,6 +30,9 @@ private:
float getGradientValue(int x, int y, int z);
float getCornerValue(Vector3d position, Vector3d corner);
static void runPerlinNoiseInThread(int xOffset, int xSize, PerlinNoise *noise);
};

View file

@ -2,9 +2,15 @@
#include <iostream>
#include <algorithm>
#include <set>
#include <thread>
#include "worleynoise.h"
#include "common/vector3d.h"
void WorleyNoise::runWorleyNoiseInThread(int xOffset, int xSize, WorleyNoise *noise)
{
noise->renderNoiseThread(xOffset, xSize);
}
void WorleyNoise::generateNoise()
{
auto start = std::chrono::high_resolution_clock::now();
@ -36,7 +42,43 @@ void WorleyNoise::generateNoise()
noiseMap.clear();
noiseMap.resize(size * size * size);
for (int x = 0; x < size; x++)
int const nThreads = (int) std::thread::hardware_concurrency() - 1;
int threadSize = std::floor((float) size / (float) nThreads);
int remaining = size - nThreads * threadSize;
std::vector<std::thread> threads;
for (int n = 0; n < nThreads; n++)
{
threads.emplace_back(runWorleyNoiseInThread, n * threadSize, threadSize, this);
}
renderNoiseThread(nThreads * threadSize, remaining);
// Rejoin the threads
for (int t = 0; t < nThreads; ++t)
{
threads[t].join();
}
// Normalize cloudNoise map to [0, 1]
float min = *std::min_element(noiseMap.begin(), noiseMap.end());
float max = *std::max_element(noiseMap.begin(), noiseMap.end());
std::for_each(noiseMap.begin(), noiseMap.end(), [min, max](float &value)
{
value = (value - min) / (max - min);
});
// Duration of computation
auto stop = std::chrono::high_resolution_clock::now();
auto duration = std::chrono::duration_cast<std::chrono::seconds>(stop - start);
std::cout << "Finished computing Worley noise for size " << size << " and " << numberOfPoints << " points in "
<< duration.count() << " seconds" << std::endl;
}
void WorleyNoise::renderNoiseThread(int xOffset, int xSize)
{
for (int x = xOffset; x < xOffset + xSize; x++)
{
for (int y = 0; y < size; y++)
{
@ -48,22 +90,6 @@ void WorleyNoise::generateNoise()
}
}
}
// Normalize getNoise map to [0, 1]
float min = *std::min_element(noiseMap.begin(), noiseMap.end());
float max = *std::max_element(noiseMap.begin(), noiseMap.end());
for (int i = 0; i < noiseMap.size(); i++)
{
noiseMap[i] = (noiseMap[i] - min) / (max - min);
}
// Duration of computation
auto stop = std::chrono::high_resolution_clock::now();
auto duration = std::chrono::duration_cast<std::chrono::seconds>(stop - start);
std::cout << "Finished computing Worley noise for size " << size << " and " << numberOfPoints << " points in "
<< duration.count() << " seconds" << std::endl;
}
WorleyNoise::WorleyNoise(int size, int numberOfPoints, unsigned int seed) : numberOfPoints(numberOfPoints), Noise(size)

View file

@ -18,6 +18,8 @@ public:
*/
WorleyNoise(int size, int numberOfPoints, unsigned int seed = 0);
void renderNoiseThread(int xOffset, int xSize);
protected:
int numberOfPoints;
std::vector<Vector3d> points; // 3D-Array, each cell represents a subcell. There are numberOfPoints^3 subcells.
@ -32,6 +34,8 @@ protected:
void generateNoise();
std::vector<Vector3d> getSubcellPoints(Vector3d point);
static void runWorleyNoiseInThread(int xOffset, int xSize, WorleyNoise *noise);
};

View file

@ -50,9 +50,9 @@ int main()
// scene.add(std::make_shared<Box>(Vector3d(9.0f, 3.0f, 12.0f), Vector3d(3.0f, 3.0f, 3.0f), boxShader1));
// Add floor
// auto floorShader = std::make_shared<SimpleShadowShader>(Color(0.9f, 0.9f, 0.9f));
// scene.add(std::make_shared<InfinitePlane>(Vector3d(0.0f, 0.0f, 0.0f), Vector3d(0.0f, 1.0f, 0.0f),
// floorShader));
auto floorShader = std::make_shared<SimpleShadowShader>(Color(0.9f, 0.9f, 0.9f));
scene.add(std::make_shared<InfinitePlane>(Vector3d(0.0f, 0.0f, 0.0f), Vector3d(0.0f, 1.0f, 0.0f),
floorShader));
// Add box for volume shader
auto cloudSettings = CloudSettings();
@ -72,7 +72,7 @@ int main()
// Render the scene
SuperRenderer sr;
sr.setSuperSamplingFactor(1);
sr.renderImage(scene, camera, 512, 512).save("result.png");
sr.renderImage(scene, camera, 2048, 2048).save("result.png");
return 0;
}

View file

@ -69,7 +69,7 @@ bool CloudShader::isTransparent() const
}
CloudShader::CloudShader(const CloudSettings &settings) : settings(settings),
cloudNoise(CloudNoise(NOISE_SIZE, settings.seed))
cloudNoise(CloudNoise(settings.noiseSize, settings.seed))
{
cloudNoise.invert = true;
}

View file

@ -7,11 +7,11 @@
#include "primitive/primitive.h"
#include "common/noise/worleynoise.h"
int const NOISE_SIZE = 64;
float const TRANSMITTANCE_BREAK = 0.0001f; // If transmittance goes below this limit, the cloud is considered opaque
struct CloudSettings
{
int noiseSize = 512; // 64
unsigned int seed = 0; // 0 for random seed
float densitySteps = .2f; // .2f
float scale = 30; // 30