Colored refraction shader
This commit is contained in:
parent
7ec5a8a5f4
commit
3b76969ff2
2 changed files with 63 additions and 51 deletions
|
@ -1,51 +1,60 @@
|
|||
#include "scene/scene.h"
|
||||
#include "shader/refractionshader.h"
|
||||
|
||||
RefractionShader::RefractionShader(float indexInside, float indexOutside) : indexInside(indexInside), indexOutside(indexOutside) {}
|
||||
RefractionShader::RefractionShader(float indexInside, float indexOutside, Color const &objectColor) : indexInside(
|
||||
indexInside), indexOutside(indexOutside), objectColor(objectColor)
|
||||
{}
|
||||
|
||||
Color RefractionShader::shade(Scene const &scene, Ray const &ray) const {
|
||||
// Circumvent getting environment map color into the mix
|
||||
if (ray.getRemainingBounces() > 0) {
|
||||
// Get the normal of the primitive which was hit
|
||||
Vector3d normalVector = ray.normal;
|
||||
Color RefractionShader::shade(Scene const &scene, Ray const &ray) const
|
||||
{
|
||||
// Circumvent getting environment map color into the mix
|
||||
if (ray.getRemainingBounces() > 0)
|
||||
{
|
||||
// Get the normal of the primitive which was hit
|
||||
Vector3d normalVector = ray.normal;
|
||||
|
||||
// Calculate the index of refraction
|
||||
float refractiveIndex = indexOutside / indexInside;
|
||||
// What if we are already inside the object?
|
||||
if (dotProduct(normalVector, ray.direction) > 0) {
|
||||
normalVector = -normalVector;
|
||||
refractiveIndex = indexInside / indexOutside;
|
||||
// Calculate the index of refraction
|
||||
float refractiveIndex = indexOutside / indexInside;
|
||||
// What if we are already inside the object?
|
||||
if (dotProduct(normalVector, ray.direction) > 0)
|
||||
{
|
||||
normalVector = -normalVector;
|
||||
refractiveIndex = indexInside / indexOutside;
|
||||
}
|
||||
|
||||
// Using the notation from the lecture
|
||||
float cosineTheta = dotProduct(normalVector, -ray.direction);
|
||||
float cosinePhi = std::sqrt(1 + refractiveIndex * refractiveIndex * (cosineTheta * cosineTheta - 1));
|
||||
// Calculate t, the new ray direction
|
||||
Vector3d t = refractiveIndex * ray.direction + (refractiveIndex * cosineTheta - cosinePhi) * normalVector;
|
||||
|
||||
// Create the refraction ray
|
||||
Ray refractionRay = ray;
|
||||
// Reset the ray
|
||||
refractionRay.length = INFINITY;
|
||||
refractionRay.primitive = nullptr;
|
||||
|
||||
// Check whether it is a refraction.
|
||||
if (dotProduct(t, normalVector) <= 0.0)
|
||||
{
|
||||
refractionRay.origin = ray.origin + (ray.length + REFR_EPS) * ray.direction;
|
||||
refractionRay.direction = normalized(t);
|
||||
} else
|
||||
{ // Otherwise, it is a total reflection.
|
||||
refractionRay.origin = ray.origin + (ray.length - REFR_EPS) * ray.direction;
|
||||
// Next we get the reflection vector
|
||||
Vector3d const reflectionVector =
|
||||
ray.direction - 2.0f * dotProduct(normalVector, ray.direction) * normalVector;
|
||||
|
||||
// Change the ray direction and origin
|
||||
refractionRay.direction = normalized(reflectionVector);
|
||||
}
|
||||
|
||||
// Send out a new refracted ray into the scene
|
||||
return scene.traceRay(refractionRay) * objectColor;
|
||||
}
|
||||
|
||||
// Using the notation from the lecture
|
||||
float cosineTheta = dotProduct(normalVector, -ray.direction);
|
||||
float cosinePhi = std::sqrt(1 + refractiveIndex * refractiveIndex * (cosineTheta * cosineTheta - 1));
|
||||
// Calculate t, the new ray direction
|
||||
Vector3d t = refractiveIndex * ray.direction + (refractiveIndex * cosineTheta - cosinePhi) * normalVector;
|
||||
|
||||
// Create the refraction ray
|
||||
Ray refractionRay = ray;
|
||||
// Reset the ray
|
||||
refractionRay.length = INFINITY;
|
||||
refractionRay.primitive = nullptr;
|
||||
|
||||
// Check whether it is a refraction.
|
||||
if (dotProduct(t, normalVector) <= 0.0) {
|
||||
refractionRay.origin = ray.origin + (ray.length + REFR_EPS) * ray.direction;
|
||||
refractionRay.direction = normalized(t);
|
||||
} else { // Otherwise, it is a total reflection.
|
||||
refractionRay.origin = ray.origin + (ray.length - REFR_EPS) * ray.direction;
|
||||
// Next we get the reflection vector
|
||||
Vector3d const reflectionVector = ray.direction - 2.0f * dotProduct(normalVector, ray.direction) * normalVector;
|
||||
|
||||
// Change the ray direction and origin
|
||||
refractionRay.direction = normalized(reflectionVector);
|
||||
}
|
||||
|
||||
// Send out a new refracted ray into the scene
|
||||
return scene.traceRay(refractionRay);
|
||||
}
|
||||
return Color(0.0f, 0.0f, 0.0f);
|
||||
return Color(0.0f, 0.0f, 0.0f);
|
||||
}
|
||||
|
||||
bool RefractionShader::isTransparent() const { return true; }
|
||||
bool RefractionShader::isTransparent() const
|
||||
{ return true; }
|
||||
|
|
|
@ -3,19 +3,22 @@
|
|||
|
||||
#include "shader/shader.h"
|
||||
|
||||
class RefractionShader : public Shader {
|
||||
class RefractionShader : public Shader
|
||||
{
|
||||
|
||||
public:
|
||||
// Constructor
|
||||
RefractionShader(float indexInside, float indexOutside);
|
||||
// Constructor
|
||||
RefractionShader(float indexInside, float indexOutside, Color const &objectColor = Color(1, 1, 1));
|
||||
|
||||
// Shader functions
|
||||
Color shade(Scene const &scene, Ray const &ray) const override;
|
||||
bool isTransparent() const override;
|
||||
// Shader functions
|
||||
Color shade(Scene const &scene, Ray const &ray) const override;
|
||||
|
||||
bool isTransparent() const override;
|
||||
|
||||
private:
|
||||
float indexInside;
|
||||
float indexOutside;
|
||||
float indexInside;
|
||||
float indexOutside;
|
||||
Color objectColor;
|
||||
};
|
||||
|
||||
#endif
|
||||
|
|
Loading…
Reference in a new issue