Clouds now interacting with lights, but especially sunlight is still buggy
This commit is contained in:
parent
9dd5878f31
commit
8a1ec659a2
4 changed files with 153 additions and 85 deletions
11
fancy1.cpp
11
fancy1.cpp
|
@ -31,9 +31,11 @@ int main()
|
|||
scene.setBackgroundColor(Color(0.529f, 0.808f, 0.922f));
|
||||
|
||||
// Add lights
|
||||
auto mainLight = std::make_shared<SunLight>(Vector3d(-1.0f, -0.5f, -1.0f), 10.0f);
|
||||
auto mainLight = std::make_shared<SunLight>(Vector3d(-1.0f, -0.5f, -1.0f), 10.0f, Color(1, 0.79f, 0.62f));
|
||||
scene.add(mainLight);
|
||||
scene.add(std::make_shared<AmbientLight>(0.3f));
|
||||
// scene.add(std::make_shared<AmbientLight>(0.3f));
|
||||
// auto light = std::make_shared<PointLight>(Vector3d(25.0f, 10.0f, 25.0f), 100.0f);
|
||||
// scene.add(light);
|
||||
|
||||
// Add the bus
|
||||
// auto busShader = std::make_shared<ToneShader>(mainLight);
|
||||
|
@ -54,11 +56,8 @@ int main()
|
|||
// Add box for volume shader
|
||||
auto cloudSettings = CloudSettings();
|
||||
cloudSettings.scale = 15.0f;
|
||||
cloudSettings.densityIntensity = 10.0f;
|
||||
cloudSettings.densityTreshold = 0.49f;
|
||||
cloudSettings.densityAbsorption = 0.9f;
|
||||
auto cloudShader = std::make_shared<CloudShader>(cloudSettings);
|
||||
scene.add(std::make_shared<Box>(Vector3d(20.0f, 8.0f, 20.0f), Vector3d(50.0f, 5.0f, 50.0f), cloudShader));
|
||||
scene.add(std::make_shared<Box>(Vector3d(20.0f, 10.0f, 20.0f), Vector3d(50.0f, 10.0f, 50.0f), cloudShader));
|
||||
|
||||
// build the tree
|
||||
scene.buildTree();
|
||||
|
|
|
@ -36,25 +36,28 @@ Color CloudShader::shade(const Scene &scene, const Ray &ray) const
|
|||
float stepLength = cloudLength / noiseSamples;
|
||||
|
||||
// Step through cloud
|
||||
float transmittance = 1.0f;
|
||||
Color cloudColor = Color(1, 1, 1);
|
||||
float transmittance = 1;
|
||||
Color cloudColor = Color(0, 0, 0);
|
||||
for (int i = 0; i < noiseSamples; ++i)
|
||||
{
|
||||
// Get sample point
|
||||
Vector3d samplePoint = hitPoint + i * stepLength * ray.direction;
|
||||
Vector3d lengthDirection = i * stepLength * ray.direction;
|
||||
Vector3d samplePoint = hitPoint + lengthDirection;
|
||||
|
||||
// Get data at point
|
||||
float sampleDensity = getCloudDensity(samplePoint) * stepLength;
|
||||
|
||||
if (sampleDensity > REFR_EPS) {
|
||||
cloudColor += lightMarch(scene, samplePoint, ray);
|
||||
if (sampleDensity > 0)
|
||||
{
|
||||
cloudColor += lightMarch(scene, samplePoint, lengthDirection) * stepLength * sampleDensity;
|
||||
}
|
||||
|
||||
transmittance *= exp(-sampleDensity * stepLength * settings.densityAbsorption);
|
||||
if (transmittance <= TRANSMITTANCE_BREAK) break; // No need to continue
|
||||
transmittance *= exp(-sampleDensity * stepLength * settings.lightAbsorptionThroughCloud);
|
||||
|
||||
if (transmittance < TRANSMITTANCE_BREAK) break; // Cloud is effectively opaque
|
||||
}
|
||||
|
||||
return background * transmittance + (1.0f - transmittance) * cloudColor;
|
||||
return background * transmittance + cloudColor;
|
||||
}
|
||||
|
||||
bool CloudShader::isTransparent() const
|
||||
|
@ -76,40 +79,60 @@ float CloudShader::getCloudDensity(Vector3d point) const
|
|||
|
||||
// Threshold
|
||||
// TODO: Smooth out!
|
||||
density = std::max(0.0f, density - settings.densityTreshold) * settings.densityIntensity;
|
||||
density = std::max(0.0f, density + settings.densityOffset) * settings.densityIntensity;
|
||||
|
||||
return density;
|
||||
}
|
||||
|
||||
Color CloudShader::lightMarch(const Scene &scene, Vector3d position, const Ray &ray) const
|
||||
Color CloudShader::lightMarch(const Scene &scene, Vector3d currentInCloudPosition, Vector3d lengthDistance) const
|
||||
{
|
||||
Color cloudColor;
|
||||
|
||||
// For alle lights
|
||||
for (const auto &light: scene.lights())
|
||||
{
|
||||
auto illumination = light->illuminate(scene, position);
|
||||
Ray ray = Ray(currentInCloudPosition - lengthDistance, normalized(lengthDistance));
|
||||
ray.length = length(lengthDistance);
|
||||
auto illumination = light->illuminate(scene, ray);
|
||||
|
||||
// Handle ambient lights
|
||||
if (illumination.distance == 0.0f) {
|
||||
if (illumination.distance == 0.0f)
|
||||
{
|
||||
cloudColor += illumination.color;
|
||||
continue;
|
||||
}
|
||||
|
||||
// Light ray
|
||||
Ray lightRay;
|
||||
lightRay.origin = position;
|
||||
lightRay.origin = currentInCloudPosition;
|
||||
lightRay.direction = illumination.direction;
|
||||
lightRay.length = 0; // Starting in cloud itself
|
||||
|
||||
Color transparency = this->transparency(scene, lightRay, illumination.distance);
|
||||
cloudColor += transparency * illumination.color;
|
||||
float density = this->rayDensity(lightRay, illumination.distance);
|
||||
density *= settings.lightAbsorptionTowardsLight;
|
||||
|
||||
// Proper light calculation
|
||||
float transmittance = exp(-density) * (1 - exp(-density * 2));
|
||||
float scatter = scatterFactor(normalized(lengthDistance), illumination.direction);
|
||||
|
||||
float factor = settings.darknessThreshold + (scatter * transmittance) * (1 - settings.darknessThreshold); // (transmittance * scatter)
|
||||
cloudColor += factor * illumination.color;
|
||||
}
|
||||
|
||||
return cloudColor;
|
||||
}
|
||||
|
||||
Color CloudShader::transparency(const Scene &scene, const Ray &ray, float maxLength) const
|
||||
{
|
||||
float density = rayDensity(ray, maxLength);
|
||||
|
||||
float transmittance = exp(-density * settings.shadowLightAbsorption);
|
||||
transmittance = 1 - (1 - transmittance) * settings.shadowIntensity;
|
||||
|
||||
return Color(1, 1, 1) * transmittance;
|
||||
}
|
||||
|
||||
float CloudShader::rayDensity(const Ray &ray, float maxLength) const
|
||||
{
|
||||
Vector3d startPoint = ray.origin + ray.direction * (ray.length + 0.0001f);
|
||||
|
||||
|
@ -122,19 +145,20 @@ Color CloudShader::transparency(const Scene &scene, const Ray &ray, float maxLen
|
|||
cloudRay.primitive = nullptr;
|
||||
|
||||
// Get out of cloud primitive first
|
||||
if (ray.primitive != nullptr && !ray.primitive->intersect(cloudRay) || cloudRay.length == INFINITY || cloudRay.length <= 0)
|
||||
if (ray.primitive != nullptr && !ray.primitive->intersect(cloudRay) || cloudRay.length == INFINITY ||
|
||||
cloudRay.length <= 0)
|
||||
{
|
||||
// Something went wrong
|
||||
return Color(1, 1, 1);
|
||||
// Something went wrong => No density
|
||||
return 0;
|
||||
}
|
||||
cloudLength = std::min(cloudRay.length, maxLength - ray.length);
|
||||
|
||||
// Calculate step length
|
||||
int noiseSamples = settings.lightSamples;
|
||||
float stepLength = cloudLength / noiseSamples;
|
||||
float stepLength = cloudLength / (float) noiseSamples;
|
||||
|
||||
// Step through cloud
|
||||
float transmittance = 1.0f;
|
||||
float density = 1.0f;
|
||||
for (int i = 0; i < noiseSamples; ++i)
|
||||
{
|
||||
// Get sample point
|
||||
|
@ -143,11 +167,47 @@ Color CloudShader::transparency(const Scene &scene, const Ray &ray, float maxLen
|
|||
// Get data at point
|
||||
float sampleDensity = getCloudDensity(samplePoint) * stepLength;
|
||||
|
||||
transmittance *= exp(-sampleDensity * stepLength);
|
||||
if (transmittance <= TRANSMITTANCE_BREAK) break; // No need to continue
|
||||
density += sampleDensity * stepLength;
|
||||
}
|
||||
|
||||
transmittance = 1 - (1 - transmittance) * settings.shadowIntensity;
|
||||
// If there is length left, check if it is in the cloud recursively
|
||||
if (cloudLength < maxLength - ray.length)
|
||||
{
|
||||
Vector3d endPoint = startPoint + (cloudLength + REFR_EPS) * ray.direction;
|
||||
Ray recursiveRay = cloudRay;
|
||||
recursiveRay.origin = endPoint;
|
||||
recursiveRay.length = 0;
|
||||
recursiveRay.primitive = nullptr;
|
||||
|
||||
return Color(1, 1, 1) * transmittance;
|
||||
if (ray.primitive != nullptr && ray.primitive->intersect(recursiveRay) && recursiveRay.length > 0)
|
||||
{
|
||||
density += rayDensity(recursiveRay, maxLength - (cloudLength + REFR_EPS));
|
||||
}
|
||||
}
|
||||
|
||||
return density;
|
||||
}
|
||||
|
||||
float CloudShader::scatterFactor(Vector3d visualRay, Vector3d illuminationRay) const
|
||||
{
|
||||
// The asymmetry parameter
|
||||
float g = 0.7f;
|
||||
|
||||
// The angle between the visual and illumination rays
|
||||
float cosTheta = dotProduct(visualRay, illuminationRay);
|
||||
|
||||
// The Dual-Lob Henyey-Greenstein function
|
||||
float blend = .5;
|
||||
float scatter = HenyeyGreenstein(cosTheta,g) * (1-blend) + HenyeyGreenstein(cosTheta,-g) * blend;
|
||||
|
||||
// Clamp the result to the range [0, 1]
|
||||
scatter = std::max(std::min(scatter, 1.0f), 0.0f);
|
||||
|
||||
return scatter;
|
||||
}
|
||||
|
||||
float CloudShader::HenyeyGreenstein(float cosTheta, float g) const
|
||||
{
|
||||
float g2 = g * g;
|
||||
return (1 - g2) / (4 * 3.1415f * pow(1 + g2 - 2 * g * (cosTheta), 1.5f));
|
||||
}
|
||||
|
|
|
@ -8,18 +8,20 @@
|
|||
#include "common/noise/worleynoise.h"
|
||||
|
||||
int const NOISE_SIZE = 128;
|
||||
int const TRANSMITTANCE_BREAK = 0.005f; // If transmittance goes below this limit, the cloud is considered opaque
|
||||
float const TRANSMITTANCE_BREAK = 0.005f; // If transmittance goes below this limit, the cloud is considered opaque
|
||||
|
||||
struct CloudSettings
|
||||
{
|
||||
int densitySamples = 100;
|
||||
int lightSamples = 20;
|
||||
int lightSamples = 100;
|
||||
float scale = 10;
|
||||
float densityTreshold = 0.55f;
|
||||
float densityIntensity = 2.5f;
|
||||
float densityAbsorption = 2;
|
||||
float darknessThreshold = 0.1f;
|
||||
float densityOffset = -0.55f;
|
||||
float densityIntensity = 7.0f;
|
||||
float darknessThreshold = 0.07f;
|
||||
float shadowLightAbsorption = 2;
|
||||
float shadowIntensity = 0.8f;
|
||||
float lightAbsorptionTowardsLight = 0.94f;
|
||||
float lightAbsorptionThroughCloud = 0.85f;
|
||||
};
|
||||
|
||||
class CloudShader : public Shader
|
||||
|
@ -41,7 +43,13 @@ private:
|
|||
|
||||
float getCloudDensity(Vector3d point) const;
|
||||
|
||||
Color lightMarch(const Scene &scene, Vector3d position, const Ray &ray) const;
|
||||
Color lightMarch(const Scene &scene, Vector3d currentInCloudPosition, Vector3d lengthDistance) const;
|
||||
|
||||
float rayDensity(const Ray &ray, float maxLength) const;
|
||||
|
||||
float scatterFactor(Vector3d visualRay, Vector3d illuminationRay) const;
|
||||
|
||||
float HenyeyGreenstein(float cosTheta, float g) const;
|
||||
};
|
||||
|
||||
|
||||
|
|
|
@ -9,56 +9,57 @@ RefractionShader::RefractionShader(float indexInside, float indexOutside, Color
|
|||
Color RefractionShader::shade(Scene const &scene, Ray const &ray) const
|
||||
{
|
||||
// Circumvent getting environment map color into the mix
|
||||
if (ray.getRemainingBounces() > 0)
|
||||
if (ray.getRemainingBounces() <= 0)
|
||||
{
|
||||
// Get the normal of the primitive which was hit
|
||||
Vector3d normalVector = ray.normal;
|
||||
|
||||
// Calculate the index of refraction
|
||||
float refractiveIndex = indexOutside / indexInside;
|
||||
// What if we are already inside the object?
|
||||
if (dotProduct(normalVector, ray.direction) > 0)
|
||||
{
|
||||
normalVector = -normalVector;
|
||||
refractiveIndex = indexInside / indexOutside;
|
||||
}
|
||||
|
||||
// Using the notation from the lecture
|
||||
float cosineTheta = dotProduct(normalVector, -ray.direction);
|
||||
float cosinePhi = std::sqrt(1 + refractiveIndex * refractiveIndex * (cosineTheta * cosineTheta - 1));
|
||||
// Calculate t, the new ray direction
|
||||
Vector3d t = refractiveIndex * ray.direction + (refractiveIndex * cosineTheta - cosinePhi) * normalVector;
|
||||
|
||||
// Create the refraction ray
|
||||
Ray refractionRay = ray;
|
||||
// Reset the ray
|
||||
refractionRay.length = INFINITY;
|
||||
refractionRay.primitive = nullptr;
|
||||
|
||||
// Check whether it is a refraction.
|
||||
if (dotProduct(t, normalVector) <= 0.0)
|
||||
{
|
||||
refractionRay.origin = ray.origin + (ray.length + REFR_EPS) * ray.direction;
|
||||
refractionRay.direction = normalized(t);
|
||||
} else
|
||||
{ // Otherwise, it is a total reflection.
|
||||
refractionRay.origin = ray.origin + (ray.length - REFR_EPS) * ray.direction;
|
||||
// Next we get the reflection vector
|
||||
Vector3d const reflectionVector =
|
||||
ray.direction - 2.0f * dotProduct(normalVector, ray.direction) * normalVector;
|
||||
|
||||
// Change the ray direction and origin
|
||||
refractionRay.direction = normalized(reflectionVector);
|
||||
}
|
||||
|
||||
// Send out a new refracted ray into the scene
|
||||
Color hitColor = scene.traceRay(refractionRay);
|
||||
float lightRemaining = 1;
|
||||
if (ray.primitive == refractionRay.primitive) lightRemaining = remainingLightIntensity(refractionRay.length);
|
||||
|
||||
return hitColor * objectColor * lightRemaining;
|
||||
return Color(0.0f, 0.0f, 0.0f);
|
||||
}
|
||||
return Color(0.0f, 0.0f, 0.0f);
|
||||
|
||||
// Get the normal of the primitive which was hit
|
||||
Vector3d normalVector = ray.normal;
|
||||
|
||||
// Calculate the index of refraction
|
||||
float refractiveIndex = indexOutside / indexInside;
|
||||
// What if we are already inside the object?
|
||||
if (dotProduct(normalVector, ray.direction) > 0)
|
||||
{
|
||||
normalVector = -normalVector;
|
||||
refractiveIndex = indexInside / indexOutside;
|
||||
}
|
||||
|
||||
// Using the notation from the lecture
|
||||
float cosineTheta = dotProduct(normalVector, -ray.direction);
|
||||
float cosinePhi = std::sqrt(1 + refractiveIndex * refractiveIndex * (cosineTheta * cosineTheta - 1));
|
||||
// Calculate t, the new ray direction
|
||||
Vector3d t = refractiveIndex * ray.direction + (refractiveIndex * cosineTheta - cosinePhi) * normalVector;
|
||||
|
||||
// Create the refraction ray
|
||||
Ray refractionRay = ray;
|
||||
// Reset the ray
|
||||
refractionRay.length = INFINITY;
|
||||
refractionRay.primitive = nullptr;
|
||||
|
||||
// Check whether it is a refraction.
|
||||
if (dotProduct(t, normalVector) <= 0.0)
|
||||
{
|
||||
refractionRay.origin = ray.origin + (ray.length + REFR_EPS) * ray.direction;
|
||||
refractionRay.direction = normalized(t);
|
||||
} else
|
||||
{ // Otherwise, it is a total reflection.
|
||||
refractionRay.origin = ray.origin + (ray.length - REFR_EPS) * ray.direction;
|
||||
// Next we get the reflection vector
|
||||
Vector3d const reflectionVector =
|
||||
ray.direction - 2.0f * dotProduct(normalVector, ray.direction) * normalVector;
|
||||
|
||||
// Change the ray direction and origin
|
||||
refractionRay.direction = normalized(reflectionVector);
|
||||
}
|
||||
|
||||
// Send out a new refracted ray into the scene
|
||||
Color hitColor = scene.traceRay(refractionRay);
|
||||
float lightRemaining = 1;
|
||||
if (ray.primitive == refractionRay.primitive) lightRemaining = remainingLightIntensity(refractionRay.length);
|
||||
|
||||
return hitColor * objectColor * lightRemaining;
|
||||
}
|
||||
|
||||
float RefractionShader::remainingLightIntensity(float distanceThroughObject) const
|
||||
|
|
Loading…
Reference in a new issue