Merge branch 'partial-occlusion-lighting'
This commit is contained in:
commit
c1bae8a43c
18 changed files with 353 additions and 128 deletions
|
@ -4,12 +4,14 @@
|
|||
|
||||
CloudNoise::CloudNoise(int size) : Noise(size)
|
||||
{
|
||||
int minSize = std::min(32, size);
|
||||
|
||||
// Some worley noises
|
||||
WorleyNoise worleyNoise1(size, 3);
|
||||
WorleyNoise worleyNoise1(minSize, 3);
|
||||
WorleyNoise worleyNoise3(size, 15);
|
||||
|
||||
// Some perlin noises
|
||||
PerlinNoise perlinNoise1(size, 3);
|
||||
PerlinNoise perlinNoise1(minSize, 3);
|
||||
PerlinNoise perlinNoise2(size, 15);
|
||||
|
||||
// Generate the noise
|
||||
|
|
|
@ -87,6 +87,8 @@ Noise::Noise(int size)
|
|||
*/
|
||||
float Noise::interpolate(float a0, float a1, float w) const
|
||||
{
|
||||
if (0.0 > w) return a0;
|
||||
if (1.0 < w) return a1;
|
||||
/* // You may want clamping by inserting:
|
||||
* if (0.0 > w) return a0;
|
||||
* if (1.0 < w) return a1;
|
||||
|
|
30
fancy1.cpp
30
fancy1.cpp
|
@ -22,21 +22,32 @@
|
|||
#include "shader/noiseshader.h"
|
||||
#include "common/noise/cloudnoise.h"
|
||||
#include "light/sunlight.h"
|
||||
#include "scene/simplescene.h"
|
||||
#include "shader/refractionshader.h"
|
||||
|
||||
int main()
|
||||
{
|
||||
FastScene scene;
|
||||
scene.setBackgroundColor(Color(0.529f, 0.808f, 0.922f));
|
||||
scene.setBackgroundColor(Color(0.529f, 0.808f, 0.922f) * 1.0f);
|
||||
// scene.setBackgroundColor(Color(1, 0.79f, 0.62f) * 0.8f);
|
||||
|
||||
// Add lights
|
||||
auto mainLight = std::make_shared<SunLight>(Vector3d(-1.0f, -0.5f, -1.0f), 10.0f);
|
||||
auto mainLight = std::make_shared<SunLight>(Vector3d(-1.0f, -0.5f, -1.0f), 2.0f, Color(1,1,1));//Color(1, 0.79f, 0.62f));
|
||||
scene.add(mainLight);
|
||||
scene.add(std::make_shared<AmbientLight>(0.3f));
|
||||
// scene.add(std::make_shared<AmbientLight>(0.3f));
|
||||
// auto light = std::make_shared<PointLight>(Vector3d(25.0f, 10.0f, 25.0f), 100.0f);
|
||||
// scene.add(light);
|
||||
|
||||
// Add the bus
|
||||
auto busShader = std::make_shared<ToneShader>(mainLight);
|
||||
scene.addObj("data/Bus/source/T07-11M.obj", Vector3d(1.0f, 1.0f, 1.0f), Vector3d(10.0f, 0.0f, 10.0f),
|
||||
busShader);
|
||||
// auto busShader = std::make_shared<ToneShader>(mainLight);
|
||||
// scene.addObj("data/Bus/source/T07-11M.obj", Vector3d(1.0f, 1.0f, 1.0f), Vector3d(15.0f, 0.0f, 10.0f),
|
||||
// busShader);
|
||||
|
||||
// Refraction boxes
|
||||
// auto boxShader = std::make_shared<RefractionShader>(1.05f, 1, Color(1,1,0), 0.7f);
|
||||
// scene.add(std::make_shared<Box>(Vector3d(5.0f, 3.0f, 10.0f), Vector3d(3.0f, 3.0f, 3.0f), boxShader));
|
||||
// auto boxShader1 = std::make_shared<RefractionShader>(1.05f, 1, Color(0,1,1), 0.7f);
|
||||
// scene.add(std::make_shared<Box>(Vector3d(9.0f, 3.0f, 12.0f), Vector3d(3.0f, 3.0f, 3.0f), boxShader1));
|
||||
|
||||
// Add floor
|
||||
auto floorShader = std::make_shared<SimpleShadowShader>(Color(0.9f, 0.9f, 0.9f));
|
||||
|
@ -46,11 +57,8 @@ int main()
|
|||
// Add box for volume shader
|
||||
auto cloudSettings = CloudSettings();
|
||||
cloudSettings.scale = 15.0f;
|
||||
cloudSettings.densityIntensity = 10.0f;
|
||||
cloudSettings.densityTreshold = 0.49f;
|
||||
cloudSettings.densityAbsorption = 0.9f;
|
||||
auto cloudShader = std::make_shared<CloudShader>(cloudSettings);
|
||||
scene.add(std::make_shared<Box>(Vector3d(5.0f, 8.0f, 5.0f), Vector3d(50.0f, 5.0f, 50.0f), cloudShader));
|
||||
scene.add(std::make_shared<Box>(Vector3d(20.0f, 10.0f, 20.0f), Vector3d(50.0f, 10.0f, 50.0f), cloudShader));
|
||||
|
||||
// build the tree
|
||||
scene.buildTree();
|
||||
|
@ -58,7 +66,7 @@ int main()
|
|||
// Set up the camera
|
||||
PerspectiveCamera camera;
|
||||
camera.setPosition(Vector3d(0.0f, 3.0f, 0.0f));
|
||||
camera.setForwardDirection(normalized(Vector3d(1.0f, 0.15f, 0.6f)));
|
||||
camera.setForwardDirection(normalized(Vector3d(1.0f, 0.15f, 1.0f)));
|
||||
camera.setUpDirection(normalized(Vector3d(0.0f, 1.0f, 0.0f)));
|
||||
camera.setFovAngle(90.0f);
|
||||
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
#include "light/ambientlight.h"
|
||||
|
||||
Light::Illumination AmbientLight::illuminate(Scene const &scene, Ray const &ray) const {
|
||||
return {this->color * this->intensity, -ray.normal};
|
||||
return {this->color * this->intensity, -ray.normal, 0};
|
||||
}
|
||||
|
|
|
@ -13,6 +13,7 @@ public:
|
|||
struct Illumination {
|
||||
Color color;
|
||||
Vector3d direction;
|
||||
float distance;
|
||||
};
|
||||
|
||||
// Constructor / Destructor
|
||||
|
|
|
@ -12,6 +12,7 @@ Light::Illumination PointLight::illuminate(Scene const &scene, Ray const &ray) c
|
|||
|
||||
// Precompute the distance from the light source
|
||||
float const distance = length(target - this->position);
|
||||
illum.distance = distance;
|
||||
|
||||
// Define a secondary ray from the surface point to the light source.
|
||||
Ray lightRay;
|
||||
|
@ -20,8 +21,10 @@ Light::Illumination PointLight::illuminate(Scene const &scene, Ray const &ray) c
|
|||
lightRay.length = distance - LGT_EPS;
|
||||
|
||||
// If the target is not in shadow...
|
||||
if (!scene.findOcclusion(lightRay))
|
||||
if (!scene.findOcclusion(lightRay)) {
|
||||
// ... compute the attenuation and light color
|
||||
illum.color = 1.0f / (distance * distance) * this->color * this->intensity;
|
||||
Color rayTransparency = scene.getTransparency(lightRay, distance);
|
||||
illum.color = 1.0f / (distance * distance) * this->color * this->intensity * rayTransparency;
|
||||
}
|
||||
return illum;
|
||||
}
|
||||
|
|
|
@ -13,6 +13,7 @@ Light::Illumination SpotLight::illuminate(Scene const &scene, Ray const &ray) co
|
|||
|
||||
// Precompute the distance from the light source
|
||||
float const distance = length(target - this->position);
|
||||
illum.distance = distance;
|
||||
|
||||
// Define a secondary ray from the surface point to the light source
|
||||
Ray lightRay;
|
||||
|
@ -28,7 +29,8 @@ Light::Illumination SpotLight::illuminate(Scene const &scene, Ray const &ray) co
|
|||
// ... and not in shadow ...
|
||||
if (!scene.findOcclusion(lightRay)) {
|
||||
// ... compute the attenuation and light color ...
|
||||
illum.color = 1.0f / (distance * distance) * this->color * this->intensity;
|
||||
Color rayTransparency = scene.getTransparency(lightRay, distance);
|
||||
illum.color = 1.0f / (distance * distance) * this->color * this->intensity * rayTransparency;
|
||||
// ... then compute the falloff towards the edge of the cone
|
||||
if (this->alphaMin < alpha)
|
||||
illum.color *= 1.0f - (alpha - this->alphaMin) / (this->alphaMax - this->alphaMin);
|
||||
|
|
|
@ -12,6 +12,7 @@ Light::Illumination SunLight::illuminate(Scene const &scene, Ray const &ray) con
|
|||
// Illumination object
|
||||
Illumination illum;
|
||||
illum.direction = this->direction;
|
||||
illum.distance = INFINITY;
|
||||
|
||||
// Define a secondary ray from the surfa ce point to the light source.
|
||||
Ray lightRay;
|
||||
|
@ -23,9 +24,13 @@ Light::Illumination SunLight::illuminate(Scene const &scene, Ray const &ray) con
|
|||
if (!scene.findOcclusion(lightRay))
|
||||
{
|
||||
// Look at angleIntensity of light
|
||||
float angleIntensity = dotProduct(-ray.normal,
|
||||
this->direction); // 0 if light is behind surface, 1 if light is in front of surface
|
||||
illum.color = this->color * this->intensity * angleIntensity;
|
||||
float angleIntensity = 1;
|
||||
// Only if normal is relevant, calculate angleIntensity
|
||||
if (ray.normal != Vector3d(0, 0, 0))
|
||||
angleIntensity = dotProduct(-ray.normal, this->direction); // 0 if light is behind surface, 1 if light is in front of surface
|
||||
|
||||
Color rayTransparency = scene.getTransparency(lightRay, INFINITY);
|
||||
illum.color = this->color * this->intensity * angleIntensity * rayTransparency;
|
||||
}
|
||||
return illum;
|
||||
}
|
|
@ -221,3 +221,25 @@ std::unique_ptr<Node> FastScene::build(Vector3d const &minimumBounds, Vector3d c
|
|||
node->child[1] = this->build(minimumSplit, maximumBounds, rightPrimitives, depth);
|
||||
return node;
|
||||
}
|
||||
|
||||
Color FastScene::getTransparency(Ray &ray, float maxDistance) const
|
||||
{
|
||||
// TODO: Not taking advantage of the tree structure!
|
||||
|
||||
ray.length = maxDistance;
|
||||
ray.primitive = nullptr;
|
||||
|
||||
Color transparency(1, 1, 1);
|
||||
for (auto i: this->primitives())
|
||||
{
|
||||
Ray r = ray;
|
||||
if (i->intersect(r) && r.length < maxDistance && i->shader()->isTransparent())
|
||||
{
|
||||
Color t = i->shader()->transparency(*this, r, maxDistance);
|
||||
transparency.r *= t.r;
|
||||
transparency.g *= t.g;
|
||||
transparency.b *= t.b;
|
||||
}
|
||||
}
|
||||
return transparency;
|
||||
}
|
||||
|
|
|
@ -28,6 +28,7 @@ public:
|
|||
// Raytracing functions
|
||||
bool findIntersection(Ray &ray) const override;
|
||||
bool findOcclusion(Ray &ray) const override;
|
||||
Color getTransparency(Ray &ray, float maxDistance) const override;
|
||||
int countNodeIntersections(const Ray &ray) const;
|
||||
|
||||
// Setup functions
|
||||
|
|
|
@ -41,6 +41,7 @@ public:
|
|||
Color traceRay(Ray &ray) const;
|
||||
virtual bool findIntersection(Ray &ray) const = 0;
|
||||
virtual bool findOcclusion(Ray &ray) const = 0;
|
||||
virtual Color getTransparency(Ray &ray, float maxDistance) const = 0;
|
||||
|
||||
protected:
|
||||
Color backgroundColor;
|
||||
|
|
|
@ -2,16 +2,38 @@
|
|||
#include "primitive/primitive.h"
|
||||
#include "shader/shader.h"
|
||||
|
||||
bool SimpleScene::findIntersection(Ray &ray) const {
|
||||
bool SimpleScene::findIntersection(Ray &ray) const
|
||||
{
|
||||
bool hit = false;
|
||||
for (auto i: this->primitives())
|
||||
hit |= i->intersect(ray);
|
||||
return hit;
|
||||
}
|
||||
|
||||
bool SimpleScene::findOcclusion(Ray &ray) const {
|
||||
bool SimpleScene::findOcclusion(Ray &ray) const
|
||||
{
|
||||
for (auto i: this->primitives())
|
||||
if (i->intersect(ray) && !i->shader()->isTransparent())
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
Color SimpleScene::getTransparency(Ray &ray, float maxDistance) const
|
||||
{
|
||||
ray.length = maxDistance;
|
||||
ray.primitive = nullptr;
|
||||
|
||||
Color transparency(1, 1, 1);
|
||||
for (auto i: this->primitives())
|
||||
{
|
||||
Ray r = ray;
|
||||
if (i->intersect(r) && r.length < maxDistance && i->shader()->isTransparent())
|
||||
{
|
||||
Color t = i->shader()->transparency(*this, r, maxDistance);
|
||||
transparency.r *= t.r;
|
||||
transparency.g *= t.g;
|
||||
transparency.b *= t.b;
|
||||
}
|
||||
}
|
||||
return transparency;
|
||||
}
|
||||
|
|
|
@ -9,6 +9,7 @@ public:
|
|||
// Raytracing functions
|
||||
bool findIntersection(Ray &ray) const override;
|
||||
bool findOcclusion(Ray &ray) const override;
|
||||
Color getTransparency(Ray &ray, float maxDistance) const override;
|
||||
};
|
||||
|
||||
#endif
|
||||
|
|
|
@ -1,6 +1,5 @@
|
|||
#include "cloudshader.h"
|
||||
#include "common/noise/cloudnoise.h"
|
||||
#include "common/noise/perlinnoise.h"
|
||||
|
||||
|
||||
Color CloudShader::shade(const Scene &scene, const Ray &ray) const
|
||||
|
@ -34,35 +33,34 @@ Color CloudShader::shade(const Scene &scene, const Ray &ray) const
|
|||
|
||||
// Calculate step length
|
||||
int noiseSamples = settings.densitySamples;
|
||||
float stepLength = cloudLength / noiseSamples;
|
||||
float stepLength = cloudLength / (float) noiseSamples;
|
||||
|
||||
// Step through cloud
|
||||
float transmittance = 1.0f;
|
||||
Color cloudColor = Color(1, 1, 1);
|
||||
float accumulatedDensity = 0.0f;
|
||||
Color cloudColor = Color(0, 0, 0);
|
||||
for (int i = 0; i < noiseSamples; ++i)
|
||||
{
|
||||
// Get sample point
|
||||
Vector3d samplePoint = hitPoint + i * stepLength * ray.direction;
|
||||
Vector3d lengthDirection = i * stepLength * ray.direction;
|
||||
Vector3d samplePoint = hitPoint + lengthDirection;
|
||||
|
||||
// Get data at point
|
||||
float sampleDensity = getCloudDensity(samplePoint) * stepLength;
|
||||
// cloudColor += lightMarch(scene, samplePoint, ray);
|
||||
|
||||
transmittance *= exp(-sampleDensity * stepLength * settings.densityAbsorption);
|
||||
if (transmittance <= TRANSMITTANCE_BREAK) break; // No need to continue
|
||||
if (sampleDensity > 0)
|
||||
{
|
||||
cloudColor += lightMarch(scene, samplePoint, lengthDirection, ray.primitive) * sampleDensity;
|
||||
}
|
||||
|
||||
// Add some ambient and diffuse lighting
|
||||
// cloud += scene.ambientLight() * material.ambient();
|
||||
// for (const auto &light: scene.lights())
|
||||
// {
|
||||
// Light::Illumination illumination = light->illuminate(scene, ray);
|
||||
// if (illumination.distance == 0.0f) continue; // Skip ambient light
|
||||
// float diffuse = dotProduct(normal, illumination.direction);
|
||||
// cloud += material.cloud() * illumination.cloud * diffuse;
|
||||
// }
|
||||
accumulatedDensity += sampleDensity;
|
||||
}
|
||||
|
||||
return background * transmittance + (1.0f - transmittance) * cloudColor;
|
||||
if (accumulatedDensity > 1)
|
||||
cloudColor /= accumulatedDensity;
|
||||
|
||||
float transmittance = exp(-accumulatedDensity * settings.lightAbsorptionThroughCloud);
|
||||
|
||||
return background * transmittance + cloudColor;
|
||||
}
|
||||
|
||||
bool CloudShader::isTransparent() const
|
||||
|
@ -82,60 +80,147 @@ float CloudShader::getCloudDensity(Vector3d point) const
|
|||
|
||||
float density = cloudNoise.getNoise(point);
|
||||
|
||||
// Treshold
|
||||
density = std::max(0.0f, density - settings.densityTreshold) * settings.densityIntensity;
|
||||
// Threshold
|
||||
// TODO: Smooth out!
|
||||
density = std::max(0.0f, density + settings.densityOffset) * settings.densityIntensity;
|
||||
|
||||
return density;
|
||||
}
|
||||
|
||||
Color CloudShader::lightMarch(const Scene &scene, Vector3d position, const Ray &ray) const
|
||||
Color CloudShader::lightMarch(const Scene &scene, Vector3d currentInCloudPosition, Vector3d lengthDistance,
|
||||
const Primitive *cloudObject) const
|
||||
{
|
||||
Color cloudColor;
|
||||
Color cloudColor = Color(0, 0, 0);
|
||||
|
||||
// For alle lights
|
||||
for (const auto &light: scene.lights())
|
||||
{
|
||||
auto illumination = light->illuminate(scene, position);
|
||||
Ray ray = Ray(currentInCloudPosition - lengthDistance, normalized(lengthDistance));
|
||||
ray.length = length(lengthDistance);
|
||||
ray.primitive = cloudObject;
|
||||
auto illumination = light->illuminate(scene, ray);
|
||||
|
||||
// Get light direction
|
||||
Vector3d lightDirection = normalized(illumination.direction); // Points from surface to light
|
||||
|
||||
// Get length of remaining cloud in light direction
|
||||
float cloudLength = 0.0f;
|
||||
|
||||
Ray cloudRay = ray;
|
||||
cloudRay.origin = position;
|
||||
cloudRay.direction = lightDirection;
|
||||
cloudRay.length = INFINITY;
|
||||
cloudRay.primitive = nullptr;
|
||||
|
||||
// Find other end of cloud
|
||||
if (!ray.primitive->intersect(cloudRay) || cloudRay.length == INFINITY)
|
||||
// Handle ambient lights
|
||||
if (illumination.distance == 0.0f)
|
||||
{
|
||||
// No cloud or at edge
|
||||
cloudColor += illumination.color;
|
||||
continue;
|
||||
}
|
||||
cloudLength = cloudRay.length;
|
||||
|
||||
// Calculate step length
|
||||
int lightSamples = settings.lightSamples;
|
||||
float stepLength = cloudLength / lightSamples;
|
||||
// Light ray
|
||||
Ray lightRay;
|
||||
lightRay.origin = currentInCloudPosition;
|
||||
lightRay.direction = illumination.direction;
|
||||
lightRay.primitive = cloudObject;
|
||||
lightRay.length = 0; // Starting in cloud itself
|
||||
|
||||
// Step through cloud
|
||||
float transmittance = 0.0f;
|
||||
for (int i = 0; i < lightSamples; ++i)
|
||||
float density = this->rayDensity(lightRay, illumination.distance);
|
||||
density *= settings.lightAbsorptionTowardsLight;
|
||||
|
||||
// Proper light calculation
|
||||
float transmittance = getDensityTransmittance(density);
|
||||
float scatter = scatterFactor(normalized(lengthDistance), illumination.direction);
|
||||
|
||||
float factor = transmittance;
|
||||
if (density > 0)
|
||||
{
|
||||
Vector3d samplePoint = position + i * stepLength * lightDirection;
|
||||
float density = getCloudDensity(samplePoint) * stepLength;
|
||||
transmittance *= exp(-density * settings.densityAbsorption);
|
||||
|
||||
if (transmittance <= TRANSMITTANCE_BREAK) break; // No need to continue
|
||||
factor = settings.darknessThreshold +
|
||||
(1.0f - settings.darknessThreshold) * factor * scatter;
|
||||
}
|
||||
|
||||
// float lightAbsorption = dotProduct(lightDirection, ray.direction); // Approaches 1 when light is parallel to ray
|
||||
|
||||
cloudColor += transmittance * illumination.color;
|
||||
cloudColor += factor * illumination.color;
|
||||
}
|
||||
|
||||
return cloudColor;
|
||||
}
|
||||
|
||||
float CloudShader::getDensityTransmittance(float density) const
|
||||
{
|
||||
return exp(-density) * (1 - exp(-density * 2)) / 0.4f;
|
||||
}
|
||||
|
||||
Color CloudShader::transparency(const Scene &scene, const Ray &ray, float maxLength) const
|
||||
{
|
||||
float density = rayDensity(ray, maxLength);
|
||||
|
||||
float transmittance = exp(-density * settings.shadowLightAbsorption);
|
||||
transmittance = 1 - (1 - transmittance) * settings.shadowIntensity;
|
||||
|
||||
return Color(1, 1, 1) * transmittance;
|
||||
}
|
||||
|
||||
float CloudShader::rayDensity(const Ray &ray, float maxLength) const
|
||||
{
|
||||
Vector3d startPoint = ray.origin + ray.direction * (ray.length + 0.0001f);
|
||||
|
||||
// Determine length of cloud
|
||||
Ray cloudRay = ray;
|
||||
cloudRay.origin = startPoint;
|
||||
cloudRay.length = INFINITY;
|
||||
cloudRay.primitive = nullptr;
|
||||
|
||||
// Get out of cloud primitive first
|
||||
if (ray.primitive != nullptr && !ray.primitive->intersect(cloudRay) || cloudRay.length == INFINITY ||
|
||||
cloudRay.length <= 0)
|
||||
{
|
||||
// Something went wrong => No density
|
||||
return 0;
|
||||
}
|
||||
float cloudLength = std::min(cloudRay.length, maxLength - ray.length);
|
||||
|
||||
// Calculate step length
|
||||
int noiseSamples = settings.lightSamples;
|
||||
float stepLength = cloudLength / (float) noiseSamples;
|
||||
|
||||
// Step through cloud
|
||||
float density = 0.0f;
|
||||
for (int i = 0; i < noiseSamples; ++i)
|
||||
{
|
||||
// Get sample point
|
||||
Vector3d samplePoint = startPoint + i * stepLength * ray.direction;
|
||||
|
||||
// Get data at point
|
||||
density += getCloudDensity(samplePoint) * stepLength;
|
||||
}
|
||||
|
||||
// If there is length left, check if it is in the cloud recursively
|
||||
if (cloudLength < maxLength - ray.length)
|
||||
{
|
||||
Vector3d endPoint = startPoint + (cloudLength + REFR_EPS) * ray.direction;
|
||||
Ray recursiveRay = cloudRay;
|
||||
recursiveRay.origin = endPoint;
|
||||
recursiveRay.length = 0;
|
||||
recursiveRay.primitive = nullptr;
|
||||
|
||||
if (ray.primitive != nullptr && ray.primitive->intersect(recursiveRay) && recursiveRay.length > 0)
|
||||
{
|
||||
density += rayDensity(recursiveRay, maxLength - (cloudLength + REFR_EPS));
|
||||
}
|
||||
}
|
||||
|
||||
return density;
|
||||
}
|
||||
|
||||
float CloudShader::scatterFactor(Vector3d visualRay, Vector3d illuminationRay) const
|
||||
{
|
||||
// The asymmetry parameter
|
||||
float g = settings.scatterWeight;
|
||||
|
||||
// The angle between the visual and illumination rays
|
||||
float cosTheta = dotProduct(visualRay, illuminationRay);
|
||||
|
||||
// The Dual-Lob Henyey-Greenstein function
|
||||
float blend = .5;
|
||||
float scatter = HenyeyGreenstein(cosTheta, g) * (1 - blend) + HenyeyGreenstein(cosTheta, -g) * blend;
|
||||
|
||||
// Clamp the result to the range [0, 1]
|
||||
scatter = std::max(std::min(scatter, 1.0f), 0.0f);
|
||||
|
||||
return scatter;
|
||||
}
|
||||
|
||||
float CloudShader::HenyeyGreenstein(float cosTheta, float g) const
|
||||
{
|
||||
float g2 = g * g;
|
||||
return (1 - g2) / (4 * 3.1415f * pow(1 + g2 - 2 * g * (cosTheta), 1.5f));
|
||||
}
|
||||
|
|
|
@ -8,18 +8,21 @@
|
|||
#include "common/noise/worleynoise.h"
|
||||
|
||||
int const NOISE_SIZE = 128;
|
||||
int const TRANSMITTANCE_BREAK = 0.01f; // If transmittance goes below this limit, the cloud is considered opaque
|
||||
float const TRANSMITTANCE_BREAK = 0.005f; // If transmittance goes below this limit, the cloud is considered opaque
|
||||
|
||||
struct CloudSettings
|
||||
{
|
||||
int densitySamples = 100;
|
||||
int lightSamples = 25;
|
||||
int lightSamples = 100;
|
||||
float scale = 10;
|
||||
float densityTreshold = 0.55f;
|
||||
float densityIntensity = 2.5f;
|
||||
float densityAbsorption = 2;
|
||||
Color cloudColor = Color(1, 1, 1);
|
||||
float darknessThreshold = 0.1f;
|
||||
float densityOffset = -0.57f;
|
||||
float densityIntensity = 7.0f; // 7.0f
|
||||
float darknessThreshold = 0.1f; // 0.07f
|
||||
float shadowIntensity = 0.6f;
|
||||
float shadowLightAbsorption = 1;
|
||||
float lightAbsorptionTowardsLight = 1.0f;
|
||||
float lightAbsorptionThroughCloud = 0.5f;
|
||||
float scatterWeight = 0.5f;
|
||||
};
|
||||
|
||||
class CloudShader : public Shader
|
||||
|
@ -29,6 +32,7 @@ public:
|
|||
|
||||
// Shader functions
|
||||
Color shade(Scene const &scene, Ray const &ray) const;
|
||||
Color transparency(const Scene &scene, const Ray &ray, float maxLength) const override;
|
||||
|
||||
private:
|
||||
CloudSettings settings;
|
||||
|
@ -40,7 +44,15 @@ private:
|
|||
|
||||
float getCloudDensity(Vector3d point) const;
|
||||
|
||||
Color lightMarch(const Scene &scene, Vector3d position, const Ray &ray) const;
|
||||
Color lightMarch(const Scene &scene, Vector3d currentInCloudPosition, Vector3d lengthDistance, const Primitive *cloudObject) const;
|
||||
|
||||
float rayDensity(const Ray &ray, float maxLength) const;
|
||||
|
||||
float scatterFactor(Vector3d visualRay, Vector3d illuminationRay) const;
|
||||
|
||||
float HenyeyGreenstein(float cosTheta, float g) const;
|
||||
|
||||
float getDensityTransmittance(float density) const;
|
||||
};
|
||||
|
||||
|
||||
|
|
|
@ -1,18 +1,27 @@
|
|||
#include "scene/scene.h"
|
||||
#include "shader/refractionshader.h"
|
||||
|
||||
RefractionShader::RefractionShader(float indexInside, float indexOutside) : indexInside(indexInside), indexOutside(indexOutside) {}
|
||||
RefractionShader::RefractionShader(float indexInside, float indexOutside, Color const &objectColor, float lightLoss)
|
||||
: indexInside(
|
||||
indexInside), indexOutside(indexOutside), objectColor(objectColor), lightLoss(lightLoss)
|
||||
{}
|
||||
|
||||
Color RefractionShader::shade(Scene const &scene, Ray const &ray) const {
|
||||
Color RefractionShader::shade(Scene const &scene, Ray const &ray) const
|
||||
{
|
||||
// Circumvent getting environment map color into the mix
|
||||
if (ray.getRemainingBounces() > 0) {
|
||||
if (ray.getRemainingBounces() <= 0)
|
||||
{
|
||||
return Color(0.0f, 0.0f, 0.0f);
|
||||
}
|
||||
|
||||
// Get the normal of the primitive which was hit
|
||||
Vector3d normalVector = ray.normal;
|
||||
|
||||
// Calculate the index of refraction
|
||||
float refractiveIndex = indexOutside / indexInside;
|
||||
// What if we are already inside the object?
|
||||
if (dotProduct(normalVector, ray.direction) > 0) {
|
||||
if (dotProduct(normalVector, ray.direction) > 0)
|
||||
{
|
||||
normalVector = -normalVector;
|
||||
refractiveIndex = indexInside / indexOutside;
|
||||
}
|
||||
|
@ -30,22 +39,51 @@ Color RefractionShader::shade(Scene const &scene, Ray const &ray) const {
|
|||
refractionRay.primitive = nullptr;
|
||||
|
||||
// Check whether it is a refraction.
|
||||
if (dotProduct(t, normalVector) <= 0.0) {
|
||||
if (dotProduct(t, normalVector) <= 0.0)
|
||||
{
|
||||
refractionRay.origin = ray.origin + (ray.length + REFR_EPS) * ray.direction;
|
||||
refractionRay.direction = normalized(t);
|
||||
} else { // Otherwise, it is a total reflection.
|
||||
} else
|
||||
{ // Otherwise, it is a total reflection.
|
||||
refractionRay.origin = ray.origin + (ray.length - REFR_EPS) * ray.direction;
|
||||
// Next we get the reflection vector
|
||||
Vector3d const reflectionVector = ray.direction - 2.0f * dotProduct(normalVector, ray.direction) * normalVector;
|
||||
Vector3d const reflectionVector =
|
||||
ray.direction - 2.0f * dotProduct(normalVector, ray.direction) * normalVector;
|
||||
|
||||
// Change the ray direction and origin
|
||||
refractionRay.direction = normalized(reflectionVector);
|
||||
}
|
||||
|
||||
// Send out a new refracted ray into the scene
|
||||
return scene.traceRay(refractionRay);
|
||||
}
|
||||
return Color(0.0f, 0.0f, 0.0f);
|
||||
Color hitColor = scene.traceRay(refractionRay);
|
||||
float lightRemaining = 1;
|
||||
if (ray.primitive == refractionRay.primitive) lightRemaining = remainingLightIntensity(refractionRay.length);
|
||||
|
||||
return hitColor * objectColor * lightRemaining;
|
||||
}
|
||||
|
||||
bool RefractionShader::isTransparent() const { return true; }
|
||||
float RefractionShader::remainingLightIntensity(float distanceThroughObject) const
|
||||
{
|
||||
return 1 - lightLoss + exp(-distanceThroughObject / 10) * lightLoss;
|
||||
}
|
||||
|
||||
bool RefractionShader::isTransparent() const
|
||||
{ return true; }
|
||||
|
||||
Color RefractionShader::transparency(const Scene &scene, const Ray &ray, float maxLength) const
|
||||
{
|
||||
// Determine length through the object
|
||||
Ray lengthRay = ray;
|
||||
// Reset the ray
|
||||
lengthRay.length = INFINITY;
|
||||
lengthRay.primitive = nullptr;
|
||||
lengthRay.origin = ray.origin + (ray.length + REFR_EPS) * ray.direction;
|
||||
|
||||
scene.traceRay(lengthRay);
|
||||
|
||||
float transparencyDistance = std::min(maxLength - ray.length, lengthRay.length);
|
||||
float lightRemaining = 1;
|
||||
if (ray.primitive == lengthRay.primitive) lightRemaining = remainingLightIntensity(transparencyDistance);
|
||||
|
||||
return objectColor * lightRemaining;
|
||||
}
|
||||
|
|
|
@ -3,19 +3,26 @@
|
|||
|
||||
#include "shader/shader.h"
|
||||
|
||||
class RefractionShader : public Shader {
|
||||
class RefractionShader : public Shader
|
||||
{
|
||||
|
||||
public:
|
||||
// Constructor
|
||||
RefractionShader(float indexInside, float indexOutside);
|
||||
RefractionShader(float indexInside, float indexOutside, Color const &objectColor = Color(1, 1, 1), float lightLoss = 0);
|
||||
|
||||
// Shader functions
|
||||
Color shade(Scene const &scene, Ray const &ray) const override;
|
||||
|
||||
bool isTransparent() const override;
|
||||
Color transparency(const Scene &scene, const Ray &ray, float maxLength) const override;
|
||||
|
||||
private:
|
||||
float indexInside;
|
||||
float indexOutside;
|
||||
float lightLoss;
|
||||
Color objectColor;
|
||||
|
||||
float remainingLightIntensity(float distanceThroughObject) const;
|
||||
};
|
||||
|
||||
#endif
|
||||
|
|
|
@ -7,14 +7,27 @@
|
|||
// Forward declarations
|
||||
class Scene;
|
||||
|
||||
class Shader {
|
||||
class Shader
|
||||
{
|
||||
public:
|
||||
// Constructor / Desctructor
|
||||
Shader() = default;
|
||||
|
||||
virtual ~Shader() = default;
|
||||
|
||||
// Get
|
||||
virtual bool isTransparent() const { return false; }
|
||||
virtual bool isTransparent() const
|
||||
{ return false; }
|
||||
|
||||
/**
|
||||
* Especially used for lighting calculations.
|
||||
* @brief Returns the light let through the shader in opposite direction of the given ray.
|
||||
* @param ray Origin and direction of the desired path through the object. Origin might be inside or outside the object. Length of the ray is upper bound for the destination point, and might not go through the object completely.
|
||||
* @param maxLength Maximum length of the ray. If the ray through the object is longer than this, it is cut off.
|
||||
* @return 0 if the shader is opaque, 1 if the shader is transparent, for each color channel.
|
||||
*/
|
||||
virtual Color transparency(const Scene &scene, const Ray &ray, float maxLength) const
|
||||
{ return isTransparent() ? Color(1, 1, 1) : Color(0, 0, 0); }
|
||||
|
||||
// Shader functions
|
||||
virtual Color shade(Scene const &scene, Ray const &ray) const = 0;
|
||||
|
|
Loading…
Reference in a new issue