Merge branch 'master' into multithread_renderer

This commit is contained in:
arvid schröder 2022-12-02 09:18:09 +01:00
commit e4ab07b4c6
3 changed files with 61 additions and 27 deletions

View file

@ -1,4 +1,5 @@
#include <array> #include <array>
#include <cmath>
#include "light/light.h" #include "light/light.h"
#include "scene/scene.h" #include "scene/scene.h"
#include "shader/brdfshader.h" #include "shader/brdfshader.h"
@ -8,6 +9,8 @@ BrdfShader::BrdfShader(char const *fileName, Color const &scale)
Color BrdfShader::shade(Scene const &scene, Ray const &ray) const { Color BrdfShader::shade(Scene const &scene, Ray const &ray) const {
Color illuminationColor; Color illuminationColor;
/*
* Arvids Code
static auto rebase = [](Vector3d const &axis_x, static auto rebase = [](Vector3d const &axis_x,
Vector3d const &axis_y, Vector3d const &axis_y,
Vector3d const &axis_z, Vector3d const &axis_z,
@ -35,6 +38,9 @@ Color BrdfShader::shade(Scene const &scene, Ray const &ray) const {
for (auto &light: scene.lights()) { for (auto &light: scene.lights()) {
auto illum = light->illuminate(scene, ray); auto illum = light->illuminate(scene, ray);
if (dotProduct(ray.normal, illum.direction) <= EPSILON) {
continue;
}
auto axis = orthoNormalized(ray.normal, ray.direction, illum.direction); auto axis = orthoNormalized(ray.normal, ray.direction, illum.direction);
auto axis_y = std::get<0>(axis); auto axis_y = std::get<0>(axis);
@ -42,16 +48,50 @@ Color BrdfShader::shade(Scene const &scene, Ray const &ray) const {
auto axis_z = std::get<2>(axis); auto axis_z = std::get<2>(axis);
auto N = normalized(rebase(axis_x, axis_y, axis_z, ray.normal)); auto N = normalized(rebase(axis_x, axis_y, axis_z, ray.normal));
auto D = normalized(rebase(axis_x, axis_y, axis_z, ray.direction)); auto D = normalized(rebase(axis_x, axis_y, axis_z, -ray.direction));
auto L = normalized(rebase(axis_x, axis_y, axis_z, illum.direction)); auto L = normalized(rebase(axis_x, axis_y, axis_z, -illum.direction));
D = axis_y * D.y + axis_z * D.z; D = axis_y * D.y + axis_z * D.z;
L = axis_y * L.y + axis_z * L.z; L = axis_y * L.y + axis_z * L.z;
illuminationColor += brdf->lookupBrdfValues(std::acos(dotProduct(illum.direction, ray.normal)), illuminationColor += brdf->lookupBrdfValues(std::acos(dotProduct(ray.normal, -ray.direction)),
0, 0.0f,
std::acos(dotProduct(ray.direction, ray.normal)), std::acos(dotProduct(illum.direction, ray.normal)),
std::acos(dotProduct(D, L))); std::acos(dotProduct(D, L)));
} }
*/
// IMPLEMENT ME // IMPLEMENT ME
for(auto& light : scene.lights()){
Light::Illumination illum = light->illuminate(scene, ray);
Vector3d invertedDirection = -ray.direction;
Vector3d invertedIllum = -illum.direction;
// the dot-product cant be negative otherwise the light ray would come from the inside
if(dotProduct(invertedIllum, ray.normal) < 0)
continue;
// Calculate coordinate System
Vector3d axisX = crossProduct(invertedDirection, ray.normal);
Vector3d axisY = crossProduct(axisX, ray.normal);
// Project ray.direction and illum.direction into plane
Vector2d projectedIllum = Vector2d(dotProduct(axisX, invertedIllum), dotProduct(axisY, invertedIllum));
Vector2d projectedDirection = Vector2d(dotProduct(axisX, invertedDirection), dotProduct(axisY, invertedDirection));
// get Z coordinate for theta angles
double coordinateZDirection = dotProduct(ray.normal, invertedDirection);
double coordinateZIllum = dotProduct(ray.normal, invertedIllum);
// calculate theta1 and 2
double theta1Correct = std::atan2(length(projectedDirection), coordinateZDirection);
double theta2Correct = std::atan2(length(projectedIllum), coordinateZIllum);
// calculate phi
double phi = std::atan2(projectedIllum.u, projectedIllum.v);
illuminationColor += brdf->lookupBrdfValues(theta1Correct, 0.0, theta2Correct, phi);
}
return illuminationColor; return illuminationColor;
} }

View file

@ -23,36 +23,30 @@ Color CookTorranceShader::shade(Scene const &scene, Ray const &ray) const {
auto NH = dotProduct(N, H); auto NH = dotProduct(N, H);
auto VH = dotProduct(V, H); auto VH = dotProduct(V, H);
//Cook-Torrance diffuse Term
float rhoD = 1.0f / PI; float rhoD = 1.0f / PI;
//Cook-Torrance Specular Term
//F = Fresnel; D = microfacet Distribution; G = Geometrical factor
float rhoS = F(VH) * D(NH) * G(NH, NV, VH, NL) / (4 * NV * NL);
//BRDF
Color rhoBD = diffuseColor * rhoD + ctColor * rhoS;
fragmentColor += illum.color * std::abs(NL) * rhoBD;
auto rhoS = F(VH) * D(NH) * G(NH, NV, VH, NL) / (4 * NV * NL);
auto rhoPD = diffuseColor * rhoD + ctColor * rhoS;
fragmentColor += illum.color * std::abs(NL) * rhoPD;
} }
return diffuseColor * fragmentColor; return diffuseColor * fragmentColor;
} }
float CookTorranceShader::D(float NdotH) const { float CookTorranceShader::D(float NdotH) const {
float divisor = 4.0f * m * m * std::pow(cos(NdotH), 4); float divisor = 4.0f * m * m * std::pow(NdotH, 4.0f);
float exponent = std::pow(tan(NdotH) / m, 2); float exponent = (NdotH * NdotH - 1.0f) / (m * m * NdotH * NdotH);
return 1 / divisor * std::exp(- 1.0f * exponent); return 1 / divisor * std::exp(exponent);
} }
float CookTorranceShader::F(float VdotH) const { float CookTorranceShader::F(float VdotH) const {
return F0 + (1 - F0) * std::pow(1 - VdotH, 5); return F0 + (1.0f - F0) * std::pow(1.0f - VdotH, 5.0f);
} }
float CookTorranceShader::G(float NdotH, float NdotV, float VdotH, float NdotL) const { float CookTorranceShader::G(float NdotH, float NdotV, float VdotH, float NdotL) const {
if (std::abs(NdotL) < 0.1f) {
return std::min(1.0f, std::min(2 * NdotH * NdotV / VdotH, 2 * NdotH * NdotL / VdotH)); return std::min(1.0f, std::min(2 * NdotH * NdotV / VdotH, 2 * NdotH * NdotL / VdotH));
} else if (std::abs(NdotV) < 0.1f) {
return 2 * NdotH * NdotL / VdotH;
} else {
return 1;
}
} }

View file

@ -14,11 +14,11 @@ Color PhongShader::shade(Scene const &scene, Ray const &ray) const {
for (auto &light: scene.lights()) { for (auto &light: scene.lights()) {
auto illum = light->illuminate(scene, ray); auto illum = light->illuminate(scene, ray);
Vector3d omegaI = normalized(illum.direction); Vector3d reflection = 2 * dotProduct(illum.direction, ray.normal) * ray.normal - illum.direction;
Vector3d omegaR = 2 * dotProduct(omegaI, ray.normal) * ray.normal - omegaI; Color diffuse = diffuseCoefficient * dotProduct(illum.direction, -ray.normal) * diffuseColor;
float cosPsi = std::max(0.0f, dotProduct(ray.direction, omegaR)); Color specular = specularCoefficient * specularColor
fragmentColor += illum.color * diffuseCoefficient * diffuseColor / PI * std::pow(dotProduct(ray.direction, reflection), shininessExponent);
+ illum.color * specularCoefficient * specularColor * std::pow(cosPsi, shininessExponent); fragmentColor += illum.color * diffuse + illum.color * specular;
} }
return fragmentColor; return fragmentColor;