added task 06 solution

This commit is contained in:
jp 2022-12-25 09:26:13 +01:00 committed by arvid schröder
parent 227335f869
commit fc608346c0
4 changed files with 179 additions and 199 deletions

View file

@ -55,22 +55,27 @@ Color Texture::color(float u, float v, bool interpolate) const {
if (!interpolate) {
color = this->getPixelAt(int(roundf(u * this->width())), int(roundf(v * this->height())));
} else {
// IMPLEMENT bilinear interpolation
float x = u * this->width();
float x1 = std::floor(x);
float x2 = std::ceil(x);
// bilinear interpolation
// adjacent pixel coordinates
int left = int(floorf(u * this->width()));
int right = int(ceilf(u * this->width()));
int top = int(floorf(v * this->height()));
int bottom = int(ceilf(v * this->height()));
float y = v * this->height();
float y1 = std::floor(y);
float y2 = std::ceil(y);
// weights
float w[4];
w[0] = right - u * this->width();
w[1] = 1 - w[0];
w[2] = bottom - v * this->height();
w[3] = 1 - w[2];
Color x1y1 = this->getPixelAt(static_cast<int>(x1), static_cast<int>(y1));
Color x2y1 = this->getPixelAt(static_cast<int>(x2), static_cast<int>(y1));
Color x1y2 = this->getPixelAt(static_cast<int>(x1), static_cast<int>(y2));
Color x2y2 = this->getPixelAt(static_cast<int>(x2), static_cast<int>(y2));
Color fxy1 = (x2 - x) * x1y1 + (x - x1) * x2y1;
Color fxy2 = (x2 - x) * x1y2 + (x - x1) * x2y2;
color = (y2 - y) * fxy1 + (y - y1) * fxy2;
// get color values and interpolate
Color val[4];
val[0] = this->getPixelAt(left, top);
val[1] = this->getPixelAt(right, top);
val[2] = this->getPixelAt(left, bottom);
val[3] = this->getPixelAt(right, bottom);
color = w[2] * w[0] * val[0] + w[2] * w[1] * val[1] + w[3] * w[0] * val[2] + w[3] * w[1] * val[3];
}
return color;
}

View file

@ -1,27 +1,29 @@
//
// Created by arvids on 13.12.22.
//
#include "superrenderer.h"
#include "common/ray.h"
#include <iostream>
#include <chrono>
#include <vector>
#include <iomanip>
#include "renderer/superrenderer.h"
#include "camera/camera.h"
#include "scene/scene.h"
#include <chrono>
#include <iomanip>
#include <iostream>
#include <thread>
void SuperRenderer::renderThread(const Scene *scene, Camera const *camera, Texture *image, int width, int widthStep,
int widthOffset, int height, int heightStep, int heightOffset, std::atomic<int> *k,
int const stepSize, int superSamplingFactor) {
void SuperRenderer::renderThread(const Scene *scene, Camera const *camera, Texture *image, int width, int widthStep, int widthOffset, int height, int heightStep, int heightOffset, std::atomic<int> *k, int const stepSize,
int superSamplingFactor) {
int const sampleCount = superSamplingFactor * superSamplingFactor;
float const samplingStep = 1.0f / superSamplingFactor;
float const aspectRatio = static_cast<float>(height) / width;
for (int y = heightOffset; y < height; y += heightStep) {
for (int x = widthOffset; x < width; x += widthStep) {
Color fragmentColor = {};
fragmentColor = calcSuperColor(scene, camera, width, height, superSamplingFactor, aspectRatio, y, x,
fragmentColor);
fragmentColor /= static_cast<float>(superSamplingFactor * superSamplingFactor);
image->setPixelAt(x, y, clamped(fragmentColor));
for (int y = heightOffset; y < image->height(); y += heightStep) {
for (int x = widthOffset; x < image->width(); x += widthStep) {
// The fragment color is averaged over all sub-pixel rays
Color fragmentColor;
for (int xs = 0; xs < superSamplingFactor; ++xs) {
for (int ys = 0; ys < superSamplingFactor; ++ys) {
Ray ray = camera->createRay(((xs * samplingStep + x) / width * 2 - 1), -((ys * samplingStep + y) / height * 2 - 1) * aspectRatio);
fragmentColor += scene->traceRay(ray);
}
}
image->setPixelAt(x, y, clamped(fragmentColor / float(sampleCount)));
// Super hacky progress bar!
if (++*k % stepSize == 0) {
std::cout << "=" << std::flush;
@ -30,31 +32,17 @@ void SuperRenderer::renderThread(const Scene *scene, Camera const *camera, Textu
}
}
Color &
SuperRenderer::calcSuperColor(const Scene *scene, const Camera *camera, int width, int height, int superSamplingFactor,
const float aspectRatio, int y, int x, Color &fragmentColor) {
for (int x1 = 0; x1 < superSamplingFactor; x1++) {
for (int y1 = 0; y1 < superSamplingFactor; y1++) {
float offsetX = (-0.5f + static_cast<float>(x1) / static_cast<float>(superSamplingFactor - 1));
float offsetY = (-0.5f + static_cast<float>(y1) / static_cast<float>(superSamplingFactor - 1));
Ray ray = camera->createRay(((static_cast<float>(x) + offsetX) / static_cast<float>(width) * 2.0f - 1),
-((static_cast<float>(y) + offsetY) / static_cast<float>(height) * 2.0f - 1) * aspectRatio);
fragmentColor += scene->traceRay(ray);
}
}
return fragmentColor;
}
Texture SuperRenderer::renderImage(Scene const &scene, Camera const &camera, int width, int height) {
Texture image(width, height);
// Setup timer
std::chrono::steady_clock::time_point start, stop;
// ICGVARIANT ray_counting
// Reset Ray counting
Ray::resetRayCount();
// ENDVARIANT ray_counting
// Super-hacky progress bar!
std::cout << "(SuperRenderer): Begin rendering..." << std::endl;
std::cout << "| 0%";
@ -65,19 +53,18 @@ Texture SuperRenderer::renderImage(Scene const &scene, Camera const &camera, int
std::cout << "100% |" << std::endl << "|";
std::atomic<int> k(0);
/* Start timer */ start = std::chrono::steady_clock::now();
// Start timer
start = std::chrono::steady_clock::now();
// Spawn a thread for every logical processor -1, calling the renderThread function
int const nThreads = std::thread::hardware_concurrency();
std::vector<std::thread> threads;
for (int t = 0; t < nThreads - 1; ++t) {
threads.emplace_back(renderThread, &scene, &camera, &image, width, nThreads, t, height, 1, 0, &k, stepSize,
this->superSamplingFactor);
threads.emplace_back(renderThread, &scene, &camera, &image, width, nThreads, t, height, 1, 0, &k, stepSize, this->superSamplingFactor_);
}
// Call the renderThread function yourself
renderThread(&scene, &camera, &image, width, nThreads, nThreads - 1, height, 1, 0, &k, stepSize,
this->superSamplingFactor);
renderThread(&scene, &camera, &image, width, nThreads, nThreads - 1, height, 1, 0, &k, stepSize, this->superSamplingFactor_);
// Rejoin the threads
for (int t = 0; t < nThreads - 1; ++t) {
@ -94,17 +81,14 @@ Texture SuperRenderer::renderImage(Scene const &scene, Camera const &camera, int
std::cout << "Time: " << seconds << "s" << std::endl;
// ICGVARIANT ray_counting
// Get the number of seconds per ray
int rays = Ray::getRayCount();
std::cout << "Paths: " << rays << std::endl;
std::cout << "Paths per second: " << std::fixed << std::setprecision(0) << rays / seconds << std::endl;
// ENDVARIANT ray_counting
return image;
}
void SuperRenderer::setSuperSamplingFactor(int superSamplingFactor) {
SuperRenderer::superSamplingFactor = superSamplingFactor;
}

View file

@ -1,33 +1,30 @@
//
// Created by arvids on 13.12.22.
//
#ifndef SUPERRENDERER_H
#define SUPERRENDERER_H
#ifndef CG1_TRACER_SUPERRENDERER_H
#define CG1_TRACER_SUPERRENDERER_H
#include "renderer.h"
#include <thread>
#include "renderer/renderer.h"
#include <atomic>
class SuperRenderer : public Renderer {
public:
static void
renderThread(const Scene *scene, Camera const *camera, Texture *image, int width, int widthStep,
static void renderThread(const Scene *scene, Camera const *camera, Texture *image, int width, int widthStep,
int widthOffset, int height, int heightStep, int heightOffset, std::atomic<int> *k,
int const stepSize, int superSamplingFactor);
Texture renderImage(const Scene &scene, const Camera &camera, int width, int height) override;
void setSuperSamplingFactor(int superSamplingFactor);
public:
// Constructor / Destructor
SuperRenderer() = default;
~SuperRenderer() override = default;
// Get
int superSamplingFactor() { return this->superSamplingFactor_; }
// Set
void setSuperSamplingFactor(int factor) { this->superSamplingFactor_ = factor; }
// Render functions
Texture renderImage(Scene const &scene, Camera const &camera, int width, int height) override;
private:
private:
int superSamplingFactor;
static Color &
calcSuperColor(const Scene *scene, const Camera *camera, int width, int height, int superSamplingFactor,
const float aspectRatio, int y, int x, Color &fragmentColor);
int superSamplingFactor_ = 2;
};
#endif //CG1_TRACER_SUPERRENDERER_H
#endif

View file

@ -6,64 +6,88 @@
Vector3d
tangentToWorldSpace(const Vector3d &surfaceNormal, const Vector3d &surfaceTangent, const Vector3d &surfaceBitangent,
const Vector3d &textureNormal)
{
const Vector3d &textureNormal) {
return textureNormal.x * surfaceTangent + textureNormal.y * surfaceBitangent + textureNormal.z * surfaceNormal;
}
MaterialShader::MaterialShader() : opacity(1.0f), normalCoefficient(1.0f), diffuseCoefficient(0.5f), reflectance(0.0f),
specularCoefficient(0.5f), shininessExponent(8)
{}
specularCoefficient(0.5f), shininessExponent(8) {}
Color MaterialShader::shade(Scene const &scene, Ray const &ray) const
{
Color MaterialShader::shade(Scene const &scene, Ray const &ray) const {
Color fragmentColor;
// IMPLEMENT ME
// (Normal Map) Calculate the new normal vector
Vector3d surfaceNormal = ray.normal;
if (this->normalMap != nullptr)
{
auto surfaceNormalMapColor = this->normalMap->color(ray.surface, true);
Vector3d textureNormal = {surfaceNormalMapColor.r, surfaceNormalMapColor.g, surfaceNormalMapColor.b};
textureNormal = textureNormal * 2.0f - Vector3d{1, 1, 1};
surfaceNormal = ray.normal * normalCoefficient +
(1 - normalCoefficient) *
tangentToWorldSpace(ray.normal, ray.tangent, ray.bitangent, textureNormal);
Vector3d normal = ray.normal;
if (this->normalMap) {
Color const normalColor = this->normalMap->color(ray.surface);
Vector3d const textureNormal =
Vector3d(2.0f * normalColor.r, 2.0f * normalColor.g, 2.0f * normalColor.b) - Vector3d(1, 1, 1);
normal = normalized(tangentToWorldSpace(normal, ray.tangent, ray.bitangent, normalized(textureNormal)) *
this->normalCoefficient + (1.0f - this->normalCoefficient) * normal);
}
// Calculate the reflection vector
Vector3d const reflection = normalized(ray.direction - 2 * dotProduct(normal, ray.direction) * normal);
// (Diffuse-/Specular Map) Accumulate the light over all light sources
Color surfaceDiffuseColor(0, 0, 0);
if (this->diffuseMap != nullptr)
{
surfaceDiffuseColor = this->diffuseMap->color(ray.surface, true);
for (const auto &light: scene.lights()) {
// Retrieve an illumination object
Light::Illumination illum = light->illuminate(scene, ray);
// Diffuse term
Color const diffuse =
this->diffuseCoefficient * illum.color * std::max(dotProduct(-illum.direction, normal), 0.0f);
if (this->diffuseMap)
fragmentColor += diffuse * this->diffuseMap->color(ray.surface);
else
fragmentColor += diffuse;
// Specular term
float const cosine = dotProduct(-illum.direction, reflection);
if (cosine > 0) {
Color const specular = this->specularCoefficient * illum.color * std::pow(cosine, shininessExponent);
if (this->specularMap)
fragmentColor += specular * this->specularMap->color(ray.surface);
else
fragmentColor += specular;
}
}
Color surfaceSpecularColor(0, 0, 0);
if (this->specularMap != nullptr)
{
surfaceSpecularColor = this->specularMap->color(ray.surface, true);
}
// (Reflection Map) Calculate the reflectance, create a reflection ray
Vector3d const reflection = ray.direction - 2 * dotProduct(surfaceNormal, ray.direction) * ray.normal;
float surfaceReflectanceCoefficient = this->reflectance;
if (this->reflectionMap != nullptr)
{
auto surfaceReflectiveMapColor = this->reflectionMap->color(ray.surface, true);
surfaceReflectanceCoefficient = surfaceReflectiveMapColor.r;
}
// (Reflection Map) Calculate the reflectance
float reflectance = this->reflectance;
if (this->reflectionMap)
reflectance *= this->reflectionMap->color(ray.surface).r;
if (reflectance > 0.0f) {
// Create a new reflection ray
Ray reflectionRay = ray;
reflectionRay.origin = ray.origin + (ray.length - REFR_EPS) * ray.direction;
reflectionRay.direction = normalized(reflection);
reflectionRay.origin = ray.origin + (ray.length - EPSILON) * ray.direction;
reflectionRay.direction = reflection;
reflectionRay.length = INFINITY;
reflectionRay.primitive = nullptr;
// Mix the object and the reflected image
Color const reflectionColor = scene.traceRay(reflectionRay);
fragmentColor = (1 - reflectance) * fragmentColor + reflectance * reflectionColor;
}
// (Alpha Map) Calculate the opacity
float alpha = this->opacity;
if (this->alphaMap)
alpha *= this->alphaMap->color(ray.surface).r;
if (alpha < 1) {
// Create a new alpha ray
Ray alphaRay = ray;
alphaRay.origin = ray.origin + (ray.length + EPSILON) * ray.direction;
alphaRay.length = INFINITY;
alphaRay.primitive = nullptr;
// Mix the foreground and background colors
Color const backgroundColor = scene.traceRay(alphaRay);
fragmentColor = alpha * fragmentColor + (1 - alpha) * backgroundColor;
}
// (Alpha Map) Calculate the opacity, create a background ray
float surfaceAlphaCoefficient(1);
if (this->alphaMap != nullptr)
{
if (this->alphaMap != nullptr) {
auto surfaceAlphaMapColor = this->alphaMap->color(ray.surface, true);
surfaceAlphaCoefficient = surfaceAlphaMapColor.r;
}
@ -73,37 +97,8 @@ Color MaterialShader::shade(Scene const &scene, Ray const &ray) const
propagatedRay.length = INFINITY;
propagatedRay.primitive = nullptr;
// Iterate over light sources
for (const auto &light: scene.lights())
{
Light::Illumination const illum = light->illuminate(scene, ray);
// Diffuse term (lambertian)
Color const diffuse = this->diffuseCoefficient * surfaceDiffuseColor *
std::max(dotProduct(-illum.direction, ray.normal), 0.0f);
fragmentColor += diffuse * illum.color;
// Specular term (phong)
float const cosine = dotProduct(-illum.direction, reflection);
if (cosine > 0)
{
Color const specular = this->specularCoefficient * surfaceSpecularColor // highlight
* powf(cosine, this->shininessExponent); // shininess factor
fragmentColor += specular * illum.color;
}
}
// Reflected ray
if (surfaceReflectanceCoefficient > 0)
{
Color const reflectionColor = scene.traceRay(reflectionRay);
fragmentColor += surfaceReflectanceCoefficient * reflectionColor * reflectance;
}
// Opacity
if (surfaceAlphaCoefficient < 1)
{
if (surfaceAlphaCoefficient < 1) {
Color const background = scene.traceRay(propagatedRay);
fragmentColor = (1 - surfaceAlphaCoefficient) * background + surfaceAlphaCoefficient * fragmentColor;
}
@ -111,5 +106,4 @@ Color MaterialShader::shade(Scene const &scene, Ray const &ray) const
return fragmentColor;
}
bool MaterialShader::isTransparent() const
{ return this->opacity < 1.0f || this->alphaMap; }
bool MaterialShader::isTransparent() const { return this->opacity < 1.0f || this->alphaMap; }