// // Created by arvids on 13.12.22. // #include "superrenderer.h" #include "common/ray.h" #include #include #include #include #include "camera/camera.h" #include "scene/scene.h" void SuperRenderer::renderThread(const Scene *scene, Camera const *camera, Texture *image, int width, int widthStep, int widthOffset, int height, int heightStep, int heightOffset, std::atomic *k, int const stepSize, int superSamplingFactor) { float const aspectRatio = static_cast(height) / width; for (int y = heightOffset; y < height; y += heightStep) { for (int x = widthOffset; x < width; x += widthStep) { Color fragmentColor = {}; fragmentColor = calcSuperColor(scene, camera, width, height, superSamplingFactor, aspectRatio, y, x, fragmentColor); fragmentColor /= static_cast(superSamplingFactor * superSamplingFactor); image->setPixelAt(x, y, clamped(fragmentColor)); // Super hacky progress bar! if (++*k % stepSize == 0) { std::cout << "=" << std::flush; } } } } Color & SuperRenderer::calcSuperColor(const Scene *scene, const Camera *camera, int width, int height, int superSamplingFactor, const float aspectRatio, int y, int x, Color &fragmentColor) { for (int x1 = 0; x1 < superSamplingFactor; x1++) { for (int y1 = 0; y1 < superSamplingFactor; y1++) { float offsetX = (-0.5f + static_cast(x1) / static_cast(superSamplingFactor - 1)); float offsetY = (-0.5f + static_cast(y1) / static_cast(superSamplingFactor - 1)); Ray ray = camera->createRay(((static_cast(x) + offsetX) / static_cast(width) * 2.0f - 1), -((static_cast(y) + offsetY) / static_cast(height) * 2.0f - 1) * aspectRatio); fragmentColor += scene->traceRay(ray); } } return fragmentColor; } Texture SuperRenderer::renderImage(Scene const &scene, Camera const &camera, int width, int height) { Texture image(width, height); // Setup timer std::chrono::steady_clock::time_point start, stop; // Reset Ray counting Ray::resetRayCount(); // Super-hacky progress bar! std::cout << "(SuperRenderer): Begin rendering..." << std::endl; std::cout << "| 0%"; int const barSize = 50; int const stepSize = (width * height) / barSize; for (int i = 0; i < barSize - 3 - 5; ++i) std::cout << " "; std::cout << "100% |" << std::endl << "|"; std::atomic k(0); /* Start timer */ start = std::chrono::steady_clock::now(); // Spawn a thread for every logical processor -1, calling the renderThread function int const nThreads = std::thread::hardware_concurrency(); std::vector threads; for (int t = 0; t < nThreads - 1; ++t) { threads.emplace_back(renderThread, &scene, &camera, &image, width, nThreads, t, height, 1, 0, &k, stepSize, this->superSamplingFactor); } // Call the renderThread function yourself renderThread(&scene, &camera, &image, width, nThreads, nThreads - 1, height, 1, 0, &k, stepSize, this->superSamplingFactor); // Rejoin the threads for (int t = 0; t < nThreads - 1; ++t) { threads[t].join(); } // Stop timer stop = std::chrono::steady_clock::now(); std::cout << "| Done!" << std::endl; // Calculate the Time taken in seconds double seconds = std::chrono::duration_cast>(stop - start).count(); std::cout << "Time: " << seconds << "s" << std::endl; // Get the number of seconds per ray int rays = Ray::getRayCount(); std::cout << "Paths: " << rays << std::endl; std::cout << "Paths per second: " << std::fixed << std::setprecision(0) << rays / seconds << std::endl; return image; } void SuperRenderer::setSuperSamplingFactor(int superSamplingFactor) { SuperRenderer::superSamplingFactor = superSamplingFactor; }