cloudy-raytracer/renderer/depthoffieldrenderer.cpp

116 lines
No EOL
4.1 KiB
C++

#include <iostream>
#include <thread>
#include <chrono>
#include "depthoffieldrenderer.h"
#include <iomanip>
DOFRenderer::DOFRenderer(float _aperture, int _secondaryRayCount, float _focalLength) : aperture(_aperture),
numSamples(_secondaryRayCount), focalLength(_focalLength) {}
std::random_device DOFRenderer::rd;
std::mt19937 DOFRenderer::gen(DOFRenderer::rd());
Color DOFRenderer::sample(const Ray &ray, const Scene& scene, const Camera& camera) const {
std::uniform_real_distribution<float> dis(-1.0, 1.0);
// calculate the point of focus
Vector3d focusPoint = ray.origin + ray.direction * focalLength;
// Final color
Color finalColor;
// Calculate all secondary Rays
for (int i = 0; i < numSamples; i++) {
// create a random point on the aperture
Vector3d rnd = Vector3d(dis(gen), dis(gen), 0);
Vector3d apertureOffset = aperture * (rnd.x * camera.getRightDirection() + rnd.y * camera.getUpDirection());
// create the new ray with the offset point
Vector3d dofRayOrigin = ray.origin + apertureOffset;
Vector3d dofRayDirection = normalized(focusPoint - dofRayOrigin);
Ray dofRay(dofRayOrigin, dofRayDirection);
// get Color of the new Ray
finalColor += scene.traceRay(dofRay);
}
// trace the new ray and return the color
return finalColor /= float(numSamples);;
}
void DOFRenderer::renderThread(const Scene *scene, Camera const *camera, Texture *image, const DOFRenderer *renderer, int width, int widthStep, int widthOffset, int height, int heightStep, int heightOffset, std::atomic<int> *k, int const stepSize) {
float const aspectRatio = static_cast<float>(height) / width;
for (int y = heightOffset; y < height; y += heightStep) {
for (int x = widthOffset; x < width; x += widthStep) {
Ray ray = camera->createRay((static_cast<float>(x) / width * 2 - 1), -(static_cast<float>(y) / height * 2 - 1) * aspectRatio);
// Trace rays with DOF
image->setPixelAt(x, y, clamped(renderer->sample(ray, *scene, *camera)));
// Super hacky progress bar!
if (++*k % stepSize == 0) {
std::cout << "=" << std::flush;
}
}
}
}
Texture DOFRenderer::renderImage(Scene const &scene, Camera const &camera, int width, int height) {
Texture image(width, height);
// Setup timer
std::chrono::steady_clock::time_point start, stop;
// Reset Ray counting
Ray::resetRayCount();
// Super-hacky progress bar!
std::cout << "(SimpleRenderer): Begin rendering..." << std::endl;
std::cout << "| 0%";
int const barSize = 50;
int const stepSize = (width * height) / barSize;
for (int i = 0; i < barSize - 3 - 5; ++i)
std::cout << " ";
std::cout << "100% |" << std::endl << "|";
std::atomic<int> k(0);
/* Start timer */ start = std::chrono::steady_clock::now();
// Spawn a thread for every logical processor -1, calling the renderThread function
int const nThreads = std::thread::hardware_concurrency();
std::vector<std::thread> threads;
for (int t = 0; t < nThreads - 1; ++t) {
threads.emplace_back(renderThread, &scene, &camera, &image, this, width, nThreads, t, height, 1, 0, &k, stepSize);
}
// Call the renderThread function yourself
renderThread(&scene, &camera, &image, this, width, nThreads, nThreads - 1, height, 1, 0, &k, stepSize);
// Rejoin the threads
for (int t = 0; t < nThreads - 1; ++t) {
threads[t].join();
}
// Stop timer
stop = std::chrono::steady_clock::now();
std::cout << "| Done!" << std::endl;
// Calculate the Time taken in seconds
double seconds = std::chrono::duration_cast<std::chrono::duration<double>>(stop - start).count();
std::cout << "Time: " << seconds << "s" << std::endl;
// Get the number of seconds per ray
int rays = Ray::getRayCount();
std::cout << "Paths: " << rays << std::endl;
std::cout << "Paths per second: " << std::fixed << std::setprecision(0) << rays / seconds << std::endl;
return image;
}