cloudy-raytracer/shader/materialshader.cpp
2023-01-22 13:15:01 +01:00

109 lines
4.5 KiB
C++

#include "light/light.h"
#include "scene/scene.h"
#include "shader/materialshader.h"
#include <cmath>
#include <iostream>
Vector3d
tangentToWorldSpace(const Vector3d &surfaceNormal, const Vector3d &surfaceTangent, const Vector3d &surfaceBitangent,
const Vector3d &textureNormal) {
return textureNormal.x * surfaceTangent + textureNormal.y * surfaceBitangent + textureNormal.z * surfaceNormal;
}
MaterialShader::MaterialShader() : opacity(1.0f), normalCoefficient(1.0f), diffuseCoefficient(0.5f), reflectance(0.0f),
specularCoefficient(0.5f), shininessExponent(8) {}
Color MaterialShader::shade(Scene const &scene, Ray const &ray) const {
Color fragmentColor;
// IMPLEMENT ME
// (Normal Map) Calculate the new normal vector
Vector3d normal = ray.normal;
if (this->normalMap) {
Color const normalColor = this->normalMap->color(ray.surface);
Vector3d const textureNormal =
Vector3d(2.0f * normalColor.r, 2.0f * normalColor.g, 2.0f * normalColor.b) - Vector3d(1, 1, 1);
normal = normalized(tangentToWorldSpace(normal, ray.tangent, ray.bitangent, normalized(textureNormal)) *
this->normalCoefficient + (1.0f - this->normalCoefficient) * normal);
}
// Calculate the reflection vector
Vector3d const reflection = normalized(ray.direction - 2 * dotProduct(normal, ray.direction) * normal);
// (Diffuse-/Specular Map) Accumulate the light over all light sources
for (const auto &light: scene.lights()) {
// Retrieve an illumination object
Light::Illumination illum = light->illuminate(scene, ray);
// Diffuse term
Color const diffuse =
this->diffuseCoefficient * illum.color * std::max(dotProduct(-illum.direction, normal), 0.0f);
if (this->diffuseMap)
fragmentColor += diffuse * this->diffuseMap->color(ray.surface);
else
fragmentColor += diffuse;
// Specular term
float const cosine = dotProduct(-illum.direction, reflection);
if (cosine > 0) {
Color const specular = this->specularCoefficient * illum.color * std::pow(cosine, shininessExponent);
if (this->specularMap)
fragmentColor += specular * this->specularMap->color(ray.surface);
else
fragmentColor += specular;
}
}
// (Reflection Map) Calculate the reflectance
float reflectance = this->reflectance;
if (this->reflectionMap)
reflectance *= this->reflectionMap->color(ray.surface).r;
if (reflectance > 0.0f) {
// Create a new reflection ray
Ray reflectionRay = ray;
reflectionRay.origin = ray.origin + (ray.length - EPSILON) * ray.direction;
reflectionRay.direction = reflection;
reflectionRay.length = INFINITY;
reflectionRay.primitive = nullptr;
// Mix the object and the reflected image
Color const reflectionColor = scene.traceRay(reflectionRay);
fragmentColor = (1 - reflectance) * fragmentColor + reflectance * reflectionColor;
}
// (Alpha Map) Calculate the opacity
float alpha = this->opacity;
if (this->alphaMap)
alpha *= this->alphaMap->color(ray.surface).r;
if (alpha < 1) {
// Create a new alpha ray
Ray alphaRay = ray;
alphaRay.origin = ray.origin + (ray.length + EPSILON) * ray.direction;
alphaRay.length = INFINITY;
alphaRay.primitive = nullptr;
// Mix the foreground and background colors
Color const backgroundColor = scene.traceRay(alphaRay);
fragmentColor = alpha * fragmentColor + (1 - alpha) * backgroundColor;
}
// (Alpha Map) Calculate the opacity, create a background ray
float surfaceAlphaCoefficient(1);
if (this->alphaMap != nullptr) {
auto surfaceAlphaMapColor = this->alphaMap->color(ray.surface, true);
surfaceAlphaCoefficient = surfaceAlphaMapColor.r;
}
Ray propagatedRay = ray;
propagatedRay.origin = ray.origin + (ray.length + REFR_EPS) * ray.direction;
propagatedRay.length = INFINITY;
propagatedRay.primitive = nullptr;
// Opacity
if (surfaceAlphaCoefficient < 1) {
Color const background = scene.traceRay(propagatedRay);
fragmentColor = (1 - surfaceAlphaCoefficient) * background + surfaceAlphaCoefficient * fragmentColor;
}
return fragmentColor;
}
bool MaterialShader::isTransparent() const { return this->opacity < 1.0f || this->alphaMap; }