cloudy-raytracer/shader/cloudshader.cpp

259 lines
8.4 KiB
C++

#include <cmath>
#include <iostream>
#include "cloudshader.h"
#include "common/noise/cloudnoise.h"
Color CloudShader::shade(const Scene &scene, const Ray &ray) const
{
Vector3d hitPoint = ray.origin + ray.direction * ray.length; // Potentially add epsilon
// Collect getNoise through the cloud
float cloudLength = 0.0f; // Length of cloud in ray direction
// Get background color behind cloud and information about the clouds length
Ray cloudRay = ray;
cloudRay.origin = ray.origin + (ray.length + REFR_EPS) * ray.direction;
cloudRay.length = INFINITY;
cloudRay.primitive = nullptr;
// Get out of cloud primitive first
if (ray.primitive->intersect(cloudRay))
{
// Get length
cloudLength = cloudRay.length;
// Prepare ray for background color
cloudRay.setRemainingBounces(cloudRay.getRemainingBounces() + 1);
cloudRay.origin = cloudRay.origin + (cloudRay.length + REFR_EPS) * cloudRay.direction;
cloudRay.length = INFINITY;
cloudRay.primitive = nullptr;
}
Color background = scene.traceRay(cloudRay);
if (cloudLength == 0.0f) return background; // No cloud or at edge
// Calculate step length
float stepLength = settings.densitySteps;
int noiseSamples = std::floor(cloudLength / stepLength);
// Step through cloud
float transmittance = 1.0f;
Color cloudColor = Color(0, 0, 0);
for (int i = 0; i < noiseSamples; ++i)
{
// Get sample point
Vector3d lengthDirection = (float) i * stepLength * ray.direction;
Vector3d samplePoint = hitPoint + lengthDirection;
// Get data at point
float sampleDensity = getCloudDensity(samplePoint, ray.primitive) * stepLength;
if (sampleDensity <= 0)
{
continue;
}
cloudColor += lightMarch(scene, samplePoint, lengthDirection, ray.primitive) * sampleDensity * transmittance;
transmittance *= calcBeer(sampleDensity * settings.lightAbsorptionThroughCloud);
if (transmittance < TRANSMITTANCE_BREAK) break;
}
return background * transmittance + cloudColor;
}
bool CloudShader::isTransparent() const
{
return true;
}
CloudShader::CloudShader(const CloudSettings &settings) : settings(settings),
cloudNoise(CloudNoise(NOISE_SIZE))
{
cloudNoise.invert = true;
}
float CloudShader::getCloudDensity(Vector3d point, Primitive const *primitive) const
{
//! Requires the unscaled point
float edgeDensity = getEdgeDensity(point, primitive);
point /= settings.scale;
float density = cloudNoise.getNoise(point);
// Threshold
// TODO: Smooth out!
density = std::max(0.0f, density + settings.densityOffset) * settings.densityIntensity;
return density * edgeDensity;
}
float CloudShader::getEdgeDensity(const Vector3d &point, const Primitive *primitive) const
{
if (primitive == nullptr)
{
return 1;
}
Vector3d size = Vector3d(0, 0, 0);
size.x = primitive->maximumBounds(0) - primitive->minimumBounds(0);
size.y = primitive->maximumBounds(1) - primitive->minimumBounds(1);
size.z = primitive->maximumBounds(2) - primitive->minimumBounds(2);
Vector3d center = Vector3d(0, 0, 0);
center.x = primitive->maximumBounds(0) + primitive->minimumBounds(0);
center.y = primitive->maximumBounds(1) + primitive->minimumBounds(1);
center.z = primitive->maximumBounds(2) + primitive->minimumBounds(2);
center /= 2;
Vector3d distance = point - center;
distance.x = std::abs(distance.x);
distance.y = std::abs(distance.y);
distance.z = std::abs(distance.z);
Vector3d distanceFromEdge = size / 2 - distance;
distanceFromEdge.x = std::max(0.0f, distanceFromEdge.x);
distanceFromEdge.y = std::max(0.0f, distanceFromEdge.y);
distanceFromEdge.z = std::max(0.0f, distanceFromEdge.z);
float fallOff = std::min(distanceFromEdge.x, std::min(distanceFromEdge.y, distanceFromEdge.z)) /
settings.edgeFadeOffDistance;
return std::min(1.0f, fallOff);
}
Color CloudShader::lightMarch(const Scene &scene, Vector3d currentInCloudPosition, Vector3d lengthDistance,
const Primitive *cloudObject) const
{
Color cloudColor = Color(0, 0, 0);
// For alle lights
for (const auto &light: scene.lights())
{
Ray ray = Ray(currentInCloudPosition - lengthDistance, normalized(lengthDistance));
ray.length = length(lengthDistance);
ray.primitive = cloudObject;
auto illumination = light->illuminate(scene, ray);
// Handle ambient lights
if (illumination.distance == 0.0f)
{
cloudColor += illumination.color;
continue;
}
// Light ray from object to light
Ray lightRay;
lightRay.origin = currentInCloudPosition;
lightRay.direction = -illumination.direction;
lightRay.primitive = cloudObject;
lightRay.length = 0; // Starting in cloud itself
float density = this->rayDensity(lightRay, illumination.distance);
// Proper light calculation
float transmittance = calcBeer(density * settings.lightAbsorptionTowardsLight);
transmittance *= phase(normalized(lengthDistance), lightRay.direction);
cloudColor += transmittance * illumination.color;
}
float darknessFactor = settings.darknessThreshold +
(1.0f - settings.darknessThreshold);
return cloudColor * darknessFactor;
}
Color CloudShader::transparency(const Scene &scene, const Ray &ray, float maxLength) const
{
float density = rayDensity(ray, maxLength);
float transmittance = calcBeer(density * settings.shadowLightAbsorption);
transmittance = 1 - (1 - transmittance) * settings.shadowIntensity;
return Color(1, 1, 1) * transmittance;
}
float CloudShader::rayDensity(const Ray &ray, float maxLength) const
{
Vector3d startPoint = ray.origin + ray.direction * (ray.length + REFR_EPS);
// Determine length of cloud
Ray cloudRay;
cloudRay.origin = startPoint;
cloudRay.length = INFINITY;
cloudRay.direction = ray.direction;
cloudRay.primitive = nullptr;
// Get out of cloud primitive first
if (ray.primitive != nullptr && !ray.primitive->intersect(cloudRay) || cloudRay.length == INFINITY ||
cloudRay.length <= 0)
{
// Assume ray started in cloud
cloudRay.length = ray.length;
cloudRay.primitive = ray.primitive;
}
float cloudLength = std::min(cloudRay.length, maxLength - ray.length);
// Calculate step length
float stepLength = settings.densitySteps;
int noiseSamples = std::floor(cloudLength / stepLength);
// Step through cloud
float density = 0.0f;
for (int i = 0; i < noiseSamples; ++i)
{
// Get sample point
Vector3d samplePoint = startPoint + (float) i * stepLength * ray.direction;
// Get data at point
density += getCloudDensity(samplePoint, ray.primitive) * stepLength;
}
// If there is length left, check if it is in the cloud recursively
if (cloudLength < maxLength - ray.length)
{
Vector3d endPoint = startPoint + (cloudLength + REFR_EPS) * ray.direction;
Ray recursiveRay = cloudRay;
recursiveRay.origin = endPoint;
recursiveRay.length = 0;
recursiveRay.primitive = nullptr;
if (ray.primitive != nullptr && ray.primitive->intersect(recursiveRay) && recursiveRay.length > 0)
{
density += rayDensity(recursiveRay, maxLength - (cloudLength + REFR_EPS));
}
}
return density;
}
float CloudShader::phase(Vector3d visualRay, Vector3d illuminationRay) const
{
// The angle between the visual and illumination rays
float cosTheta = dotProduct(visualRay, illuminationRay);
// The Dual-Lob Henyey-Greenstein function
float blend = .5;
float phaseBlend = calcDualHenyeyGreenstein(cosTheta, settings.phaseA) * (1 - blend) +
calcDualHenyeyGreenstein(cosTheta, -settings.phaseB) * blend;
// Clamp the result to the range [0, 1]
phaseBlend = std::max(std::min(phaseBlend, 1.0f), 0.0f);
return settings.phaseOffset + phaseBlend * settings.phaseIntensity;
}
float CloudShader::calcBeer(float d)
{
float beer = std::exp(-d);
return beer;
}
float CloudShader::calcDualHenyeyGreenstein(float cosTheta, float g)
{
float g2 = g * g;
return (1 - g2) / (4 * 3.1415f * std::pow(1 + g2 - 2 * g * (cosTheta), 1.5f));
}