from datetime import datetime import json from typing import Dict import matplotlib.pyplot as plt # Config FILE_PATH = "log.txt" # Read file content = None with open(FILE_PATH, "r") as file: content = file.readlines() def parse_log_entry(entry: Dict) -> Dict: if entry["countChange"] == 0: return False entry["dateTime"] = datetime.strptime( str(entry["dateTime"])[:19], "%Y-%m-%d %H:%M:%S") if entry["dateTime"] < datetime(2022, 1, 1): return False return entry # Collect log = [json.loads(line.strip("\x00")) for line in content] print("Number of entries:", len(log)) # Parse & Filter log = [parse_log_entry(entry) for entry in log if parse_log_entry(entry)] print("Number of counts:", len(log)) # Render fig, ax = plt.subplots() # Create a figure containing a single axes. times: list[datetime] = [entry["dateTime"] for entry in log] counts: list[int] = [entry["previousPeopleCount"] for entry in log] ax.step(times, counts, where="pre") plt.show() # Calculate faults for c, n in zip(list(range(len(log))), list(range(len(log)))[1:]): estimated_count: int = log[c]["previousPeopleCount"] + \ log[c]["countChange"] faulty: bool = estimated_count != log[n]["previousPeopleCount"] log[c]["faulty"] = faulty log[c]["faultyCount"] = log[c]["previousPeopleCount"] if faulty else None log = log[:-1] fault_count = sum(1 for entry in log if entry["faulty"]) print("Number of faults:", fault_count) print("Percentage of faults:", fault_count / len(log) * 100) print("-"*20) faulty_off = [entry for entry in log if entry["faulty"] and entry["faultyCount"] == 0] faulty_on = [entry for entry in log if entry["faulty"] and entry["faultyCount"] != 0] print("Number of false-0:", len(faulty_off)) print("Number of false-1:", len(faulty_on)) print("Percentage of false-0:", len(faulty_off) / fault_count * 100) print("Percentage of false-1:", len(faulty_on) / fault_count * 100)