96 lines
2.8 KiB
Python
96 lines
2.8 KiB
Python
from datetime import datetime
|
|
import json
|
|
from typing import Dict
|
|
from xmlrpc.client import Boolean
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
# Config
|
|
FILE_PATH = "log.txt"
|
|
|
|
|
|
# Read file
|
|
content = None
|
|
with open(FILE_PATH, "r") as file:
|
|
content = file.readlines()
|
|
|
|
|
|
def parse_log_entry(entry: Dict) -> Dict:
|
|
# Only keep last record of a sequence
|
|
if not is_last_in_sequence(entry):
|
|
return False
|
|
|
|
entry["dateTime"] = datetime.strptime(
|
|
str(entry["dateTime"])[:19], "%Y-%m-%d %H:%M:%S")
|
|
if entry["dateTime"] < datetime(2022, 1, 1):
|
|
return False
|
|
|
|
return entry
|
|
|
|
|
|
def is_last_in_sequence(entry: Dict) -> Boolean:
|
|
indoor = entry["directionState"]["indoor"]
|
|
outdoor = entry["directionState"]["outdoor"]
|
|
|
|
if len(indoor) <= 0 or len(outdoor) <= 0:
|
|
return False
|
|
|
|
end_key = "end_distance"
|
|
# Check version
|
|
if end_key not in indoor[-1]:
|
|
end_key = "end"
|
|
|
|
if indoor[-1][end_key] is None or outdoor[-1][end_key] is None:
|
|
return False
|
|
|
|
return True
|
|
|
|
|
|
# Collect
|
|
log = [json.loads(line.strip("\x00")) for line in content]
|
|
print("Number of total entries:", len(log))
|
|
|
|
# Parse & Filter
|
|
log = [parse_log_entry(entry) for entry in log if parse_log_entry(entry)]
|
|
print("Number of filtered entries:", len(log))
|
|
|
|
# Render
|
|
fig, ax = plt.subplots() # Create a figure containing a single axes.
|
|
times: list[datetime] = [entry["dateTime"] for entry in log]
|
|
counts: list[int] = [entry["previousPeopleCount"] for entry in log]
|
|
ax.step(times, counts, where="pre")
|
|
plt.show()
|
|
print("-"*20)
|
|
|
|
|
|
# Print stats
|
|
walk_ins = [entry for entry in log if entry["countChange"] > 0]
|
|
walk_outs = [entry for entry in log if entry["countChange"] < 0]
|
|
walk_unders = [entry for entry in log if entry["countChange"] == 0]
|
|
print("Number of walk-ins:", len(walk_ins))
|
|
print("Number of walk-outs:", len(walk_outs))
|
|
print("Number of walk-unders:", len(walk_unders))
|
|
print("-"*20)
|
|
|
|
# Calculate faults
|
|
for c, n in zip(list(range(len(log))), list(range(len(log)))[1:]):
|
|
estimated_count: int = log[c]["previousPeopleCount"] + \
|
|
log[c]["countChange"]
|
|
faulty: bool = estimated_count != log[n]["previousPeopleCount"]
|
|
log[c]["faulty"] = faulty
|
|
log[c]["faultyCount"] = log[c]["previousPeopleCount"] if faulty else None
|
|
|
|
log = log[:-1]
|
|
fault_count = sum(1 for entry in log if entry["faulty"])
|
|
print("Number of faults:", fault_count)
|
|
print("Percentage of faults:", fault_count / len(log) * 100, "%")
|
|
|
|
print("-"*20)
|
|
faulty_off = [entry for entry in log if entry["faulty"]
|
|
and entry["faultyCount"] == 0]
|
|
faulty_on = [entry for entry in log if entry["faulty"]
|
|
and entry["faultyCount"] != 0]
|
|
print("Number of false-0:", len(faulty_off))
|
|
print("Number of false-1:", len(faulty_on))
|
|
print("Percentage of false-0:", len(faulty_off) / fault_count * 100, "%")
|
|
print("Percentage of false-1:", len(faulty_on) / fault_count * 100, "%")
|