83 lines
2.5 KiB
Python
83 lines
2.5 KiB
Python
|
audio_file = "./tavern_talk/short_transcript.wav"
|
||
|
|
||
|
|
||
|
import torchaudio
|
||
|
import torch
|
||
|
from speechbrain.inference.classifiers import EncoderClassifier
|
||
|
from scipy.cluster.vq import kmeans2
|
||
|
import numpy as np
|
||
|
import matplotlib.pyplot as plt
|
||
|
|
||
|
# Load the speaker encoder model
|
||
|
classifier = EncoderClassifier.from_hparams(
|
||
|
source="speechbrain/spkrec-xvect-voxceleb", savedir="tmp_spkrec"
|
||
|
)
|
||
|
|
||
|
# Load the ASR model from torchaudio
|
||
|
asr_model = torchaudio.pipelines.WAV2VEC2_ASR_BASE_960H.get_model()
|
||
|
|
||
|
# Define the audio file path
|
||
|
signal, fs = torchaudio.load(audio_file)
|
||
|
|
||
|
# Segment the audio into 1-second chunks with a 50% overlap for speaker embeddings
|
||
|
window_size = int(fs * 1.0)
|
||
|
overlap = int(fs * 0.5)
|
||
|
segments = []
|
||
|
embeddings = []
|
||
|
|
||
|
for start in range(0, signal.shape[1] - window_size, overlap):
|
||
|
segment = signal[:, start : start + window_size]
|
||
|
segments.append((start / fs, (start + window_size) / fs))
|
||
|
embedding = classifier.encode_batch(segment)
|
||
|
embeddings.append(embedding.squeeze(0).detach().cpu().numpy())
|
||
|
|
||
|
# Convert embeddings to a 2D numpy array (num_segments x embedding_size)
|
||
|
embeddings = np.vstack(embeddings)
|
||
|
|
||
|
# Perform KMeans clustering on 2D embeddings
|
||
|
centroids, labels = kmeans2(embeddings, k=6) # Adjust 'k' based on number of speakers
|
||
|
|
||
|
# Output diarization results with speaker labels and timestamps
|
||
|
print("Diarization Results:")
|
||
|
for i, (start, end) in enumerate(segments):
|
||
|
print(f"{start:.2f}s - {end:.2f}s: Speaker {labels[i]}")
|
||
|
|
||
|
# Perform ASR on the entire audio file and display the result
|
||
|
with torch.inference_mode():
|
||
|
asr_transcription = asr_model(signal)[0] # Extract only the transcription result
|
||
|
asr_text = asr_transcription.tolist()
|
||
|
|
||
|
print("\nTranscription Results:")
|
||
|
print(asr_text)
|
||
|
|
||
|
|
||
|
# Optional: plot audio waveform with speaker probabilities
|
||
|
def plot_diarization_with_audio(signal, fs, segments, labels):
|
||
|
# Plot audio waveform
|
||
|
plt.figure(figsize=(12, 6))
|
||
|
time = torch.arange(0, signal.shape[1]) / fs
|
||
|
plt.subplot(2, 1, 1)
|
||
|
plt.plot(time, signal.t().numpy())
|
||
|
plt.title("Audio Waveform")
|
||
|
plt.xlabel("Time (s)")
|
||
|
plt.ylabel("Amplitude")
|
||
|
|
||
|
# Plot speaker diarization
|
||
|
plt.subplot(2, 1, 2)
|
||
|
for i, (start, end) in enumerate(segments):
|
||
|
speaker_label = labels[i]
|
||
|
plt.plot(
|
||
|
[start, end],
|
||
|
[speaker_label, speaker_label],
|
||
|
label=f"Speaker {speaker_label}",
|
||
|
linewidth=4,
|
||
|
)
|
||
|
|
||
|
plt.xlabel("Time (s)")
|
||
|
plt.ylabel("Speaker")
|
||
|
plt.title("Speaker Diarization with Probability")
|
||
|
plt.show()
|
||
|
|
||
|
|
||
|
plot_diarization_with_audio(signal, fs, segments, labels)
|