Some diarization
This commit is contained in:
parent
cc2d6f8210
commit
b71c78c5f2
1 changed files with 34 additions and 70 deletions
|
@ -1,82 +1,46 @@
|
|||
audio_file = "./tavern_talk/short_transcript.wav"
|
||||
|
||||
|
||||
import torchaudio
|
||||
# instantiate the pipeline
|
||||
from pyannote.audio import Pipeline
|
||||
import torch
|
||||
from speechbrain.inference.classifiers import EncoderClassifier
|
||||
from scipy.cluster.vq import kmeans2
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
# Load the speaker encoder model
|
||||
classifier = EncoderClassifier.from_hparams(
|
||||
source="speechbrain/spkrec-xvect-voxceleb", savedir="tmp_spkrec"
|
||||
audio_path = "short_transcript.wav"
|
||||
|
||||
pipeline = Pipeline.from_pretrained(
|
||||
"pyannote/speaker-diarization-3.1",
|
||||
use_auth_token="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",
|
||||
)
|
||||
|
||||
# Load the ASR model from torchaudio
|
||||
asr_model = torchaudio.pipelines.WAV2VEC2_ASR_BASE_960H.get_model()
|
||||
|
||||
# Define the audio file path
|
||||
signal, fs = torchaudio.load(audio_file)
|
||||
# run the pipeline on an audio file
|
||||
diarization = pipeline(audio_path, min_speakers=6, max_speakers=7)
|
||||
|
||||
# Segment the audio into 1-second chunks with a 50% overlap for speaker embeddings
|
||||
window_size = int(fs * 1.0)
|
||||
overlap = int(fs * 0.5)
|
||||
segments = []
|
||||
embeddings = []
|
||||
|
||||
for start in range(0, signal.shape[1] - window_size, overlap):
|
||||
segment = signal[:, start : start + window_size]
|
||||
segments.append((start / fs, (start + window_size) / fs))
|
||||
embedding = classifier.encode_batch(segment)
|
||||
embeddings.append(embedding.squeeze(0).detach().cpu().numpy())
|
||||
|
||||
# Convert embeddings to a 2D numpy array (num_segments x embedding_size)
|
||||
embeddings = np.vstack(embeddings)
|
||||
|
||||
# Perform KMeans clustering on 2D embeddings
|
||||
centroids, labels = kmeans2(embeddings, k=6) # Adjust 'k' based on number of speakers
|
||||
|
||||
# Output diarization results with speaker labels and timestamps
|
||||
print("Diarization Results:")
|
||||
for i, (start, end) in enumerate(segments):
|
||||
print(f"{start:.2f}s - {end:.2f}s: Speaker {labels[i]}")
|
||||
|
||||
# Perform ASR on the entire audio file and display the result
|
||||
with torch.inference_mode():
|
||||
asr_transcription = asr_model(signal)[0] # Extract only the transcription result
|
||||
asr_text = asr_transcription.tolist()
|
||||
|
||||
print("\nTranscription Results:")
|
||||
print(asr_text)
|
||||
# dump the diarization output to disk using RTTM format
|
||||
with open("short_transcript.rttm", "w") as rttm:
|
||||
diarization.write_rttm(rttm)
|
||||
|
||||
|
||||
# Optional: plot audio waveform with speaker probabilities
|
||||
def plot_diarization_with_audio(signal, fs, segments, labels):
|
||||
# Plot audio waveform
|
||||
plt.figure(figsize=(12, 6))
|
||||
time = torch.arange(0, signal.shape[1]) / fs
|
||||
plt.subplot(2, 1, 1)
|
||||
plt.plot(time, signal.t().numpy())
|
||||
plt.title("Audio Waveform")
|
||||
import matplotlib.pyplot as plt
|
||||
import librosa
|
||||
import librosa.display
|
||||
|
||||
# Load the audio file and compute its waveform
|
||||
audio, sr = librosa.load(audio_path, sr=None)
|
||||
|
||||
# Plot the audio waveform
|
||||
plt.figure(figsize=(10, 6))
|
||||
librosa.display.waveshow(audio, sr=sr, alpha=0.5, color="gray")
|
||||
plt.xlabel("Time (s)")
|
||||
plt.ylabel("Amplitude")
|
||||
plt.title("Speaker Diarization Results")
|
||||
|
||||
# Plot speaker diarization
|
||||
plt.subplot(2, 1, 2)
|
||||
for i, (start, end) in enumerate(segments):
|
||||
speaker_label = labels[i]
|
||||
plt.plot(
|
||||
[start, end],
|
||||
[speaker_label, speaker_label],
|
||||
label=f"Speaker {speaker_label}",
|
||||
linewidth=4,
|
||||
)
|
||||
# Plot speaker segments
|
||||
for segment, _, label in diarization.itertracks(yield_label=True):
|
||||
# Get start and end times of each speaker segment
|
||||
start, end = segment.start, segment.end
|
||||
plt.plot([start, end], [0.9, 0.9], label=f"Speaker {label}")
|
||||
|
||||
# Avoid duplicate labels in legend
|
||||
handles, labels = plt.gca().get_legend_handles_labels()
|
||||
by_label = dict(zip(labels, handles))
|
||||
plt.legend(by_label.values(), by_label.keys(), loc="upper right")
|
||||
|
||||
plt.xlabel("Time (s)")
|
||||
plt.ylabel("Speaker")
|
||||
plt.title("Speaker Diarization with Probability")
|
||||
plt.show()
|
||||
|
||||
|
||||
plot_diarization_with_audio(signal, fs, segments, labels)
|
||||
|
|
Loading…
Reference in a new issue