SpeechBrain experiments

This commit is contained in:
Maximilian Giller 2024-11-10 09:27:57 +01:00
parent 70d01eb444
commit cc2d6f8210
3 changed files with 1666 additions and 1 deletions

1581
poetry.lock generated

File diff suppressed because it is too large Load diff

View file

@ -9,6 +9,10 @@ package-mode = false
[tool.poetry.dependencies]
python = "^3.10"
pydub = "^0.25.1"
speechbrain = "^1.0.2"
matplotlib = "^3.9.2"
torch = "^2.5.1"
torchaudio = "^2.5.1"
[build-system]

View file

@ -0,0 +1,82 @@
audio_file = "./tavern_talk/short_transcript.wav"
import torchaudio
import torch
from speechbrain.inference.classifiers import EncoderClassifier
from scipy.cluster.vq import kmeans2
import numpy as np
import matplotlib.pyplot as plt
# Load the speaker encoder model
classifier = EncoderClassifier.from_hparams(
source="speechbrain/spkrec-xvect-voxceleb", savedir="tmp_spkrec"
)
# Load the ASR model from torchaudio
asr_model = torchaudio.pipelines.WAV2VEC2_ASR_BASE_960H.get_model()
# Define the audio file path
signal, fs = torchaudio.load(audio_file)
# Segment the audio into 1-second chunks with a 50% overlap for speaker embeddings
window_size = int(fs * 1.0)
overlap = int(fs * 0.5)
segments = []
embeddings = []
for start in range(0, signal.shape[1] - window_size, overlap):
segment = signal[:, start : start + window_size]
segments.append((start / fs, (start + window_size) / fs))
embedding = classifier.encode_batch(segment)
embeddings.append(embedding.squeeze(0).detach().cpu().numpy())
# Convert embeddings to a 2D numpy array (num_segments x embedding_size)
embeddings = np.vstack(embeddings)
# Perform KMeans clustering on 2D embeddings
centroids, labels = kmeans2(embeddings, k=6) # Adjust 'k' based on number of speakers
# Output diarization results with speaker labels and timestamps
print("Diarization Results:")
for i, (start, end) in enumerate(segments):
print(f"{start:.2f}s - {end:.2f}s: Speaker {labels[i]}")
# Perform ASR on the entire audio file and display the result
with torch.inference_mode():
asr_transcription = asr_model(signal)[0] # Extract only the transcription result
asr_text = asr_transcription.tolist()
print("\nTranscription Results:")
print(asr_text)
# Optional: plot audio waveform with speaker probabilities
def plot_diarization_with_audio(signal, fs, segments, labels):
# Plot audio waveform
plt.figure(figsize=(12, 6))
time = torch.arange(0, signal.shape[1]) / fs
plt.subplot(2, 1, 1)
plt.plot(time, signal.t().numpy())
plt.title("Audio Waveform")
plt.xlabel("Time (s)")
plt.ylabel("Amplitude")
# Plot speaker diarization
plt.subplot(2, 1, 2)
for i, (start, end) in enumerate(segments):
speaker_label = labels[i]
plt.plot(
[start, end],
[speaker_label, speaker_label],
label=f"Speaker {speaker_label}",
linewidth=4,
)
plt.xlabel("Time (s)")
plt.ylabel("Speaker")
plt.title("Speaker Diarization with Probability")
plt.show()
plot_diarization_with_audio(signal, fs, segments, labels)