Some more advanced diarization
This commit is contained in:
parent
b71c78c5f2
commit
d62195a590
1 changed files with 53 additions and 26 deletions
|
@ -1,40 +1,67 @@
|
|||
# instantiate the pipeline
|
||||
from pyannote.audio import Pipeline
|
||||
import torch
|
||||
|
||||
audio_path = "short_transcript.wav"
|
||||
|
||||
pipeline = Pipeline.from_pretrained(
|
||||
"pyannote/speaker-diarization-3.1",
|
||||
use_auth_token="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",
|
||||
)
|
||||
|
||||
|
||||
# run the pipeline on an audio file
|
||||
diarization = pipeline(audio_path, min_speakers=6, max_speakers=7)
|
||||
|
||||
# dump the diarization output to disk using RTTM format
|
||||
with open("short_transcript.rttm", "w") as rttm:
|
||||
diarization.write_rttm(rttm)
|
||||
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
from pyannote.audio import Pipeline
|
||||
import whisper
|
||||
import librosa
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import librosa.display
|
||||
from pyannote.core import Segment, Annotation
|
||||
|
||||
# Load the audio file and compute its waveform
|
||||
# Load Whisper model for transcription
|
||||
whisper_model = whisper.load_model("large")
|
||||
|
||||
|
||||
# Transcribe audio using Whisper
|
||||
def transcribe_audio(audio_path):
|
||||
result = whisper_model.transcribe(audio_path)
|
||||
segments = result["segments"]
|
||||
return [(segment["start"], segment["end"], segment["text"]) for segment in segments]
|
||||
|
||||
|
||||
# Initialize Pyannote Pipeline for diarization
|
||||
pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization-3.1")
|
||||
pipeline.to(torch.device("cuda"))
|
||||
|
||||
|
||||
# Perform diarization
|
||||
def perform_diarization(audio_path) -> Pipeline:
|
||||
diarization = pipeline(audio_path, min_speakers=5, max_speakers=7)
|
||||
|
||||
# dump the diarization output to disk using RTTM format
|
||||
with open("diarization.rttm", "w") as rttm:
|
||||
diarization.write_rttm(rttm)
|
||||
|
||||
print("Finished diarization")
|
||||
|
||||
return diarization
|
||||
|
||||
|
||||
# Load audio and perform both transcription and diarization
|
||||
audio_path = "mid_audio.wav"
|
||||
transcription_segments = transcribe_audio(audio_path)
|
||||
diarization: Pipeline = perform_diarization(audio_path)
|
||||
|
||||
# Print speaker and corresponding text
|
||||
print("\nSpeaker and Text Segments:")
|
||||
for segment in transcription_segments:
|
||||
start, end, text = segment
|
||||
for spk_segment, _, speaker_label in diarization.itertracks(yield_label=True):
|
||||
if spk_segment.start < end and spk_segment.end > start:
|
||||
print(f"Speaker {speaker_label}: {text}")
|
||||
break
|
||||
|
||||
# Load audio for plotting
|
||||
audio, sr = librosa.load(audio_path, sr=None)
|
||||
|
||||
# Plot the audio waveform
|
||||
plt.figure(figsize=(10, 6))
|
||||
# Plot the audio waveform and speaker segments
|
||||
plt.figure(figsize=(12, 6))
|
||||
librosa.display.waveshow(audio, sr=sr, alpha=0.5, color="gray")
|
||||
plt.xlabel("Time (s)")
|
||||
plt.ylabel("Amplitude")
|
||||
plt.title("Speaker Diarization Results")
|
||||
plt.title("Speaker Diarization with Transcription")
|
||||
|
||||
# Plot speaker segments
|
||||
# Plot speaker segments and add transcription text
|
||||
for segment, _, label in diarization.itertracks(yield_label=True):
|
||||
# Get start and end times of each speaker segment
|
||||
start, end = segment.start, segment.end
|
||||
plt.plot([start, end], [0.9, 0.9], label=f"Speaker {label}")
|
||||
|
||||
|
|
Loading…
Reference in a new issue