tavern-talk/tavern_talk/diarization.py
2025-03-26 22:29:22 +01:00

61 lines
1.8 KiB
Python

import torch
from pyannote.audio import Pipeline
import whisper
AUDIO_FILE = "2024-07-29_audio.wav"
filename = (AUDIO_FILE[::-1].split(".")[1].split("/")[0].split("\\")[0])[::-1]
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
# Load Whisper model for transcription
whisper_model = whisper.load_model("large")
# Transcribe audio using Whisper
def transcribe_audio(audio_path):
result = whisper_model.transcribe(audio_path)
segments = result["segments"]
return [(segment["start"], segment["end"], segment["text"]) for segment in segments]
# Initialize Pyannote Pipeline for diarization
pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization-3.1")
pipeline.to(torch.device("cuda"))
# Perform diarization
def perform_diarization(audio_path) -> Pipeline:
diarization = pipeline(audio_path, min_speakers=5, max_speakers=7)
# dump the diarization output to disk using RTTM format
with open(f"diarization_{filename}.rttm", "w") as rttm:
diarization.write_rttm(rttm)
print("Finished diarization")
return diarization
# Load audio and perform both transcription and diarization
transcription_segments = transcribe_audio(AUDIO_FILE)
diarization: Pipeline = perform_diarization(AUDIO_FILE)
# Print speaker and corresponding text
print("\nSpeaker and Text Segments:")
diarization_with_text = []
for segment in transcription_segments:
start, end, text = segment
for spk_segment, _, speaker_label in diarization.itertracks(yield_label=True):
if spk_segment.start < end and spk_segment.end > start:
diarization_with_text.append(f"Speaker {speaker_label}: {text}")
break
with open(f"transcript-diarization_{filename}.txt", "w") as fp:
fp.writelines(f"{l}\n" for l in diarization_with_text)
print("\n".join(diarization_with_text))
print("Saved diarization")