Compare commits

...

11 commits

25 changed files with 3456 additions and 141 deletions

1
.gitignore vendored
View file

@ -7,6 +7,7 @@ build/
/data/*
!/data/README.txt
!/data/fireplace
!/data/FancyPlane
!/data/Bus
!/data/subdiv
!/data/parallax

View file

@ -40,6 +40,12 @@ endif()
add_executable(beautifulScene beautifulScene.cpp)
target_link_libraries(beautifulScene tracey)
add_executable(beautifulSceneEpic beautifulSceneEpic.cpp)
target_link_libraries(beautifulSceneEpic tracey)
add_executable(beautifulSceneDark beautifulSceneDark.cpp)
target_link_libraries(beautifulSceneDark tracey)
add_executable(tracey_ex1 homeworkMains/ex1.cpp)
target_link_libraries(tracey_ex1 tracey)
@ -78,6 +84,12 @@ endif()
add_executable(fancy1 fancy1.cpp)
target_link_libraries(fancy1 tracey)
add_executable(bloom bloom.cpp)
target_link_libraries(bloom tracey)
add_executable(DOFScene DOFScene.cpp)
target_link_libraries(DOFScene tracey)
set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} -O0")
set(CMAKE_C_FLAGS_DEBUG "${CMAKE_C_FLAGS_DEBUG} -O0")

123
DOFScene.cpp Normal file
View file

@ -0,0 +1,123 @@
#include <iostream>
#include <string>
#include <shader/refractionshader.h>
#include "camera/perspectivecamera.h"
#include "renderer/simplerenderer.h"
#include "scene/simplescene.h"
#include "primitive/box.h"
#include "primitive/infiniteplane.h"
#include "primitive/objmodel.h"
#include "primitive/sphere.h"
#include "shader/brdfshader.h"
#include "shader/lambertshader.h"
#include "shader/mirrorshader.h"
#include "shader/phongshader.h"
#include "shader/cooktorranceshader.h"
#include "renderer/depthoffieldrenderer.h"
#include "light/ambientlight.h"
#include "light/pointlight.h"
#include "light/spotlight.h"
#include "post_processing/bloom.h"
int main() {
// Let's create a simple scene...
SimpleScene scene;
// Set up the camera
PerspectiveCamera camera;
camera.setFovAngle(90.0f);
camera.setPosition(Vector3d(0.0f, 0.0f, -10.0f));
camera.setForwardDirection(Vector3d(0.0f, 0.0f, 1.0f));
camera.setUpDirection(Vector3d(0.0f, 1.0f, 0.0f));
// Add shaders
auto mirror = std::make_shared<MirrorShader>();
auto white = std::make_shared<LambertShader>(Color(0.9f, 0.9f, 0.9f));
auto red = std::make_shared<LambertShader>(Color(1.0f, 0.3f, 0.2f));
auto blue = std::make_shared<LambertShader>(Color(0.2f, 0.3f, 1.0f));
auto orange = std::make_shared<PhongShader>(Color(1.0f, 0.64f, 0.0f), 1.0f, Color(1.0f, 1.0f, 1.0f), 1.0f, 25.0f);
auto gold= std::make_shared<CookTorranceShader>(Color(0.83f, 0.69f, 0.22f), Color(1.0f, 1.0f, 0.0f), 1.2f, 0.2f);
auto blueMetallic = std::make_shared<BrdfShader>("../data/blue-metallic-paint.binary", Color(7.0f, 7.0f, 7.0f));
auto darkRed = std::make_shared<BrdfShader>("../data/dark-red-paint.binary", Color(7.0f, 7.0f, 7.0f));
auto glass = std::make_shared<RefractionShader>(1.31f, 1.0f);
// Set up the walls
// ---------------------------------------------------------------------------
scene.add(std::make_shared<InfinitePlane>(Vector3d(0.0f, 0.0f, +5.0f), Vector3d(0.0f, 0.0f, -1.0f), mirror));
scene.add(std::make_shared<InfinitePlane>(Vector3d(0.0f, 0.0f, -5.0f), Vector3d(0.0f, 0.0f, +1.0f), mirror));
scene.add(std::make_shared<InfinitePlane>(Vector3d(0.0f, +5.0f, 0.0f), Vector3d(0.0f, -1.0f, 0.0f), white));
scene.add(std::make_shared<InfinitePlane>(Vector3d(0.0f, -5.0f, 0.0f), Vector3d(0.0f, +1.0f, 0.0f), white));
scene.add(std::make_shared<InfinitePlane>(Vector3d(+5.0f, 0.0f, 0.0f), Vector3d(-1.0f, 0.0f, 0.0f), blue));
scene.add(std::make_shared<InfinitePlane>(Vector3d(-5.0f, 0.0f, 0.0f), Vector3d(+1.0f, 0.0f, 0.0f), red));
scene.add(std::make_shared<Sphere>(Vector3d(-5.0f, 0.0f, 0.0f), 1.0f, blueMetallic));
scene.add(std::make_shared<Sphere>(Vector3d(-2.0f, 5.0f, 0.0f), 1.0f, orange));
scene.add(std::make_shared<Sphere>(Vector3d(2.0f, 4.0f, 0.0f), 1.0f, orange));
scene.add(std::make_shared<Sphere>(Vector3d(3.0f, 4.0f, -2.0f), 1.0f, glass));
scene.add(std::make_shared<Sphere>(Vector3d(2.0f, 3.0f, 4.0f), 1.0f, orange));
scene.add(std::make_shared<Sphere>(Vector3d(-3.0f, 3.0f, 2.0f), 1.0f, orange));
scene.add(std::make_shared<Sphere>(Vector3d(2.0f, 1.0f, 0.0f), 1.0f, mirror));
scene.add(std::make_shared<Sphere>(Vector3d(3.0f, -3.0f, 0.0f), 1.0f, darkRed));
scene.add(std::make_shared<Sphere>(Vector3d(5.0f, 0.0f, 0.0f), 1.0f, darkRed));
scene.add(std::make_shared<Sphere>(Vector3d(-5.0f, -3.3f, -4.0f), 1.0f, mirror));
// Add the teapot
auto ship = std::make_shared<ObjModel>(gold);
ship->loadObj("../data/NewObjects/Random/Ship.obj", Vector3d(0.07f, 0.07f, 0.07f), Vector3d(-1.0f, -5.0f, 0.0f));
scene.add(ship);
// Add ambient light
scene.add(std::make_shared<AmbientLight>(0.15f));
scene.add(std::make_shared<PointLight>(Vector3d(0.0f, 4.0f, -4.0f), 7.0f));
scene.add(std::make_shared<PointLight>(Vector3d(0.0f, 2.5f, -4.0f), 7.0f));
// Render the scene
// SimpleRenderer renderer;
// renderer.renderImage(scene, camera, 1024, 1024).save("result.png");
// initialize renderer: aperture = lens thickness, secondaryRayCount = how many rays per pixel are created
// focalLength = the area which is in focus
DOFRenderer renderer(0.2, 50, 10.0f);
// Use DOFRenderer to raytrace !!! careful more pixels lead to insane rendering times
int width = 600;
Texture image = renderer.renderImage(scene, camera, width, width / 16 * 9);
// Use post-processing Bloom effect
// Bloom bloomEffect = Bloom(image.getImage());
// Texture imageWithBloom = image;
// imageWithBloom.setTexture(bloomEffect.bloom(0.55f, 5, 10.0f, 0.06f));
// save images
image.save("result.png");
CImg<float> CImgOfImage = image.getImage();
CImg<unsigned char> img_8bit(image.width(), image.height(), 1, 3);
cimg_forXYC(CImgOfImage,x,y,c) {
img_8bit(x,y,c) = (unsigned char)std::round(CImgOfImage(x, y, c) * 255);
}
CImgDisplay disp(img_8bit, "My Rendered Image",0, false, false);
while (!disp.is_closed()) {
disp.wait();
disp.display(img_8bit);
if (disp.is_resized()) {
disp.resize();
}
}
// image.save("resultWithBloom");
return 0;
}

View file

@ -1,20 +1,145 @@
#include <scene/simplescene.h>
#include <camera/perspectivecamera.h>
#include <shader/materialshader.h>
#include <primitive/sphere.h>
#include <light/ambientlight.h>
#include <light/pointlight.h>
#include <renderer/depthoffieldrenderer.h>
#include <post_processing/bloom.h>
#include <primitive/objmodel.h>
#include <shader/lambertshader.h>
#include <renderer/simplerenderer.h>
#include <shader/brdfshader.h>
#include <thread>
//#include <conio.h>
#include <shader/cooktorranceshader.h>
#include <shader/phongshader.h>
#include <primitive/infiniteplane.h>
#include <light/spotlight.h>
#include <shader/cloudshader.h>
#include <shader/mirrorshader.h>
#include <shader/refractionshader.h>
#include <primitive/triangle.h>
#include <shader/simpleshadowshader.h>
#include <light/sunlight.h>
#include "scene/fastscene.h"
#include "shader/toneshader.h"
#include "renderer/superrenderer.h"
int main()
{
int main() {
SimpleScene scene;
scene.setEnvironmentMap(std::make_shared<Texture>("data/clear_blue_sky.jpg"));
// scene.setEnvironmentMap(std::make_shared<Texture>("data/TychoSkymapII.t5_04096x02048.png"));
scene.setBackgroundColor(Color(0.1, 0.1, 0.1));
// Light
auto mainLight = std::make_shared<SunLight>(Vector3d(.5f, -.7f, .5f), 2.0f,
Color(1, 1, 1));//Color(1, 0.79f, 0.62f));
scene.add(mainLight);
scene.add(std::make_shared<AmbientLight>(.1f));
// Set up the camera
PerspectiveCamera camera;
camera.setFovAngle(90.0f);
camera.setPosition(Vector3d(0.0f, 0.0f, -10.0f));
camera.setForwardDirection(Vector3d(0.0f, 0.0f, 1.0f));
camera.setFovAngle(70.0f);
camera.setPosition(Vector3d(0.0f, 1.0f, 0.0f));
camera.setForwardDirection(Vector3d(1.0f, 0.0f, 0.0f));
// Final camera Position
// camera.setPosition(Vector3d(0.0f, -4.9f, 0.0f));
// camera.setForwardDirection(Vector3d(1.0f, 0.2f, 0.0f));
camera.setUpDirection(Vector3d(0.0f, 1.0f, 0.0f));
// Shader
auto church = std::make_shared<SimpleShadowShader>(Color(0.6f, 0.4f, 0.2f));
auto mirror = std::make_shared<MirrorShader>();
auto glass = std::make_shared<RefractionShader>(1.31f, 1.0f);
// Make Objects
auto house = std::make_shared<ObjModel>(church);
// auto temple = std::make_shared<ObjModel>(glass);
house->loadObj("data/NewObjects/house/objBuilding.obj", Vector3d(1.0f, 1.0f, 1.0f) * 0.7f,
Vector3d(43.0f, 1.5f, -9.0f));
// temple->loadObj("data/NewObjects/Random/Temple.obj", Vector3d(0.1f, 0.1f, 0.1f), Vector3d(30.0f, -6.0f, -10.0f));
// Setup ground and sky
// Add floor
// scene.add(std::make_shared<InfinitePlane>(Vector3d(0.0f, -5.0f, 0.0f), Vector3d(0.0f, 1.0f, 0.0f), church));
// Add clouds
auto cloudSettings = CloudSettings();
cloudSettings.seed = 42;
cloudSettings.lightAbsorptionTowardsLight = 0.2f;
cloudSettings.lightAbsorptionThroughCloud = 1.9f;
cloudSettings.densityOffset = -0.65f;
cloudSettings.shadowIntensity = 0.4f;
auto cloudShader = std::make_shared<CloudShader>(cloudSettings);
scene.add(std::make_shared<Box>(Vector3d(0.0f, 15.0f, 0.0f), Vector3d(200.0f, 10.0f, 300.0f), cloudShader));
// Insert Objects
scene.add(house);
//scene.add(temple);
//scene.add(std::make_shared<Sphere>(Vector3d(3.0f, -2.0f, -5.0f), 0.5f, mirror));
float f = 0.7;
scene.add(std::make_shared<Sphere>(Vector3d(10.0f, -6.5f, 5.5f), 5.0f, std::make_shared<SimpleShadowShader>(Color(0.1f, 0.6f, 0.1f) * f)));
f *= 0.9f;
scene.add(std::make_shared<Sphere>(Vector3d(15.0f, -21.0f, -9.0f), 20.0f, std::make_shared<SimpleShadowShader>(Color(0.1f, 0.6f, 0.1f) * f)));
f *= 0.9f;
scene.add(std::make_shared<Sphere>(Vector3d(23.0f, -12.0f, 5.0f), 10.0f, std::make_shared<SimpleShadowShader>(Color(0.1f, 0.6f, 0.1f) * f)));
f *= 0.9f;
scene.add(std::make_shared<Sphere>(Vector3d(30.0f, -15.0f, 19.0f), 15.0f, std::make_shared<SimpleShadowShader>(Color(0.1f, 0.6f, 0.1f) * f)));
f *= 0.9f;
scene.add(std::make_shared<Sphere>(Vector3d(45.0f, -38.0f, -9.0f), 40.0f, std::make_shared<SimpleShadowShader>(Color(0.1f, 0.6f, 0.1f) * f)));
f *= 0.9f;
scene.add(std::make_shared<Sphere>(Vector3d(52.0f, -28.0f, 20.0f), 30.0f, std::make_shared<SimpleShadowShader>(Color(0.1f, 0.6f, 0.1f) * f)));
// Render
SuperRenderer rendererTest;
rendererTest.setSuperSamplingFactor(1);
int width = 512;
Texture imageSceneToTest = rendererTest.renderImage(scene, camera, width, width / 16 * 9);
// initialize renderer: aperture = lens thickness, secondaryRayCount = how many rays per pixel are created
// focalLength = the area which is in focus
// DOFRenderer renderer(0.2, 100, 70.0f);
// Use DOFRenderer to raytrace !!! careful more pixels lead to insane rendering times
// Texture image = renderer.renderImage(scene, camera, 1920, 1080);
// Use post-processing Bloom effect
/*
Bloom bloomEffect = Bloom(image.getImage());
Texture imageWithBloom = image;
imageWithBloom.setTexture(bloomEffect.bloom(0.55f, 5, 10.0f, 0.06f));
*/
// save images
imageSceneToTest.save("result.png");
// image.save("result.png");
// image.save("resultWithBloom");
// CImg<float> image = imageSceneToTest.getImage();
// CImg<unsigned char> img_8bit(image.width(), image.height(), 1, 3);
// cimg_forXYC(image, x, y, c) {
// img_8bit(x, y, c) = (unsigned char) std::round(image(x, y, c) * 255);
// }
//
// CImgDisplay disp(img_8bit, "My Rendered Image", 0, false, false);
// while (!disp.is_closed()) {
// disp.wait();
// disp.display(img_8bit);
// if (disp.is_resized()) {
// disp.resize();
// }
// }
return 0;
}
}

152
beautifulSceneDark.cpp Normal file
View file

@ -0,0 +1,152 @@
#include <scene/simplescene.h>
#include <camera/perspectivecamera.h>
#include <shader/materialshader.h>
#include <primitive/sphere.h>
#include <light/ambientlight.h>
#include <light/pointlight.h>
#include <renderer/depthoffieldrenderer.h>
#include <post_processing/bloom.h>
#include <primitive/objmodel.h>
#include <shader/lambertshader.h>
#include <renderer/simplerenderer.h>
#include <shader/brdfshader.h>
#include <thread>
//#include <conio.h>
#include <shader/cooktorranceshader.h>
#include <shader/phongshader.h>
#include <primitive/infiniteplane.h>
#include <light/spotlight.h>
#include <shader/cloudshader.h>
#include <shader/mirrorshader.h>
#include <shader/refractionshader.h>
#include <primitive/triangle.h>
#include <shader/simpleshadowshader.h>
#include <light/sunlight.h>
#include "scene/fastscene.h"
#include "shader/toneshader.h"
#include "renderer/superrenderer.h"
int main()
{
SimpleScene scene;
scene.setEnvironmentMap(std::make_shared<Texture>("data/clear_red_sky.jpg"));
// scene.setEnvironmentMap(std::make_shared<Texture>("data/TychoSkymapII.t5_04096x02048.png"));
scene.setBackgroundColor(Color(0.2, 0.1, 0.1) * .5f);
// Light
auto mainLight = std::make_shared<SunLight>(Vector3d(-.9f, -.7f, .5f), 2.0f,
Color(1, 0.79f, 0.62f));
scene.add(mainLight);
// scene.add(std::make_shared<AmbientLight>(.1f));
// Set up the camera
PerspectiveCamera camera;
camera.setFovAngle(70.0f);
camera.setPosition(Vector3d(0.0f, 1.0f, 0.0f));
camera.setForwardDirection(Vector3d(1.0f, 0.0f, 0.0f));
// Final camera Position
// camera.setPosition(Vector3d(0.0f, -4.9f, 0.0f));
// camera.setForwardDirection(Vector3d(1.0f, 0.2f, 0.0f));
camera.setUpDirection(Vector3d(0.0f, 1.0f, 0.0f));
// Shader
auto church = std::make_shared<SimpleShadowShader>(Color(0.6f, 0.4f, 0.2f));
auto mirror = std::make_shared<MirrorShader>();
auto glass = std::make_shared<RefractionShader>(1.31f, 1.0f);
// Make Objects
auto house = std::make_shared<ObjModel>(church);
// auto temple = std::make_shared<ObjModel>(glass);
house->loadObj("data/NewObjects/house/objBuilding.obj", Vector3d(1.0f, 1.0f, 1.0f) * 0.7f,
Vector3d(43.0f, 1.5f, -9.0f));
// temple->loadObj("data/NewObjects/Random/Temple.obj", Vector3d(0.1f, 0.1f, 0.1f), Vector3d(30.0f, -6.0f, -10.0f));
// Setup ground and sky
// Add floor
// scene.add(std::make_shared<InfinitePlane>(Vector3d(0.0f, -5.0f, 0.0f), Vector3d(0.0f, 1.0f, 0.0f), church));
// Add clouds
auto cloudSettings = CloudSettings();
cloudSettings.seed = 42;
cloudSettings.lightAbsorptionTowardsLight = 0.2f;
cloudSettings.lightAbsorptionThroughCloud = 1.9f;
cloudSettings.densityOffset = -0.65f;
cloudSettings.shadowIntensity = 0.4f;
auto cloudShader = std::make_shared<CloudShader>(cloudSettings);
scene.add(std::make_shared<Box>(Vector3d(0.0f, 15.0f, 0.0f), Vector3d(200.0f, 10.0f, 300.0f), cloudShader));
// Insert Objects
scene.add(house);
//scene.add(temple);
//scene.add(std::make_shared<Sphere>(Vector3d(3.0f, -2.0f, -5.0f), 0.5f, mirror));
float f = 0.5;
scene.add(std::make_shared<Sphere>(Vector3d(10.0f, -6.5f, 5.5f), 5.0f,
std::make_shared<SimpleShadowShader>(Color(0.1f, 0.6f, 0.1f) * f)));
f *= 0.9f;
scene.add(std::make_shared<Sphere>(Vector3d(15.0f, -21.0f, -9.0f), 20.0f,
std::make_shared<SimpleShadowShader>(Color(0.1f, 0.6f, 0.1f) * f)));
f *= 0.9f;
scene.add(std::make_shared<Sphere>(Vector3d(23.0f, -12.0f, 5.0f), 10.0f,
std::make_shared<SimpleShadowShader>(Color(0.1f, 0.6f, 0.1f) * f)));
f *= 0.9f;
scene.add(std::make_shared<Sphere>(Vector3d(30.0f, -15.0f, 19.0f), 15.0f,
std::make_shared<SimpleShadowShader>(Color(0.1f, 0.6f, 0.1f) * f)));
f *= 0.9f;
scene.add(std::make_shared<Sphere>(Vector3d(45.0f, -38.0f, -9.0f), 40.0f,
std::make_shared<SimpleShadowShader>(Color(0.1f, 0.6f, 0.1f) * f)));
f *= 0.9f;
scene.add(std::make_shared<Sphere>(Vector3d(52.0f, -28.0f, 20.0f), 30.0f,
std::make_shared<SimpleShadowShader>(Color(0.1f, 0.6f, 0.1f) * f)));
// Render
SuperRenderer rendererTest;
rendererTest.setSuperSamplingFactor(1);
int width = 512;
Texture imageSceneToTest = rendererTest.renderImage(scene, camera, width, width / 16 * 9);
// initialize renderer: aperture = lens thickness, secondaryRayCount = how many rays per pixel are created
// focalLength = the area which is in focus
// DOFRenderer renderer(0.2, 100, 70.0f);
// Use DOFRenderer to raytrace !!! careful more pixels lead to insane rendering times
// Texture image = renderer.renderImage(scene, camera, 1920, 1080);
// Use post-processing Bloom effect
/*
Bloom bloomEffect = Bloom(image.getImage());
Texture imageWithBloom = image;
imageWithBloom.setTexture(bloomEffect.bloom(0.55f, 5, 10.0f, 0.06f));
*/
// save images
imageSceneToTest.save("result.png");
// image.save("result.png");
// image.save("resultWithBloom");
// CImg<float> image = imageSceneToTest.getImage();
// CImg<unsigned char> img_8bit(image.width(), image.height(), 1, 3);
// cimg_forXYC(image, x, y, c) {
// img_8bit(x, y, c) = (unsigned char) std::round(image(x, y, c) * 255);
// }
//
// CImgDisplay disp(img_8bit, "My Rendered Image", 0, false, false);
// while (!disp.is_closed()) {
// disp.wait();
// disp.display(img_8bit);
// if (disp.is_resized()) {
// disp.resize();
// }
// }
return 0;
}

88
beautifulSceneEpic.cpp Normal file
View file

@ -0,0 +1,88 @@
#include <scene/simplescene.h>
#include <camera/perspectivecamera.h>
#include <shader/materialshader.h>
#include <primitive/sphere.h>
#include <light/ambientlight.h>
#include <light/pointlight.h>
#include <renderer/depthoffieldrenderer.h>
#include <post_processing/bloom.h>
#include <primitive/objmodel.h>
#include <shader/lambertshader.h>
#include <renderer/simplerenderer.h>
#include <shader/brdfshader.h>
#include <thread>
//#include <conio.h>
#include <shader/cooktorranceshader.h>
#include <shader/phongshader.h>
#include <primitive/infiniteplane.h>
#include <light/spotlight.h>
#include <shader/cloudshader.h>
#include <shader/mirrorshader.h>
#include <shader/refractionshader.h>
#include <primitive/triangle.h>
#include <shader/simpleshadowshader.h>
#include <light/sunlight.h>
#include "scene/fastscene.h"
#include "shader/toneshader.h"
#include "renderer/superrenderer.h"
int main()
{
FastScene scene;
scene.setEnvironmentMap(std::make_shared<Texture>("data/clear_blue_sky.jpg"));
// Light
// Alternative directio Vector3d(0, -.5f, -.5f)
auto mainLight = std::make_shared<SunLight>(Vector3d(0, -0.09f, 1), 2.0f, Color(1, 1, 1));
scene.add(mainLight);
// Set up the camera
PerspectiveCamera camera;
camera.setFovAngle(100.0f);
camera.setPosition(Vector3d(0, .5f, .5f) * 2);
camera.setForwardDirection(Vector3d(0, .5f, .5f));
camera.setUpDirection(Vector3d(0, .5f, -.5f));
// Shader
Vector3d planePosition = Vector3d(0, 3, 4);
auto plane = std::make_shared<ObjModel>(
std::make_shared<ToneShader>(mainLight, Color(1, 1, 1), Color(1, 0.5f, 0.5f), Color(1, 0.5f, 0.5f) * 0.5f));
plane->loadObj("data/FancyPlane/Plane.obj", Vector3d(1.0f, 1.0f, 1.0f) * 0.005f, planePosition);
scene.add(plane);
// Add clouds
auto cloudSettings = CloudSettings();
cloudSettings.seed = 10;
cloudSettings.scale = 40;
cloudSettings.noiseSize = 512;
cloudSettings.lightAbsorptionTowardsLight = 0.05f;
cloudSettings.lightAbsorptionThroughCloud = 1.9f;
cloudSettings.densityOffset = -0.61f;
auto cloudShader = std::make_shared<CloudShader>(cloudSettings);
scene.add(std::make_shared<Box>(Vector3d(0.0f, 15.0f, 30.0f), Vector3d(100.0f, 15.0f, 70.0f), cloudShader));
scene.buildTree();
// Render
// SuperRenderer rendererTest;
// rendererTest.setSuperSamplingFactor(1);
// int width = 512;
// Texture image = rendererTest.renderImage(scene, camera, width, width / 16 * 9);
// initialize renderer: aperture = lens thickness, secondaryRayCount = how many rays per pixel are created
float focalLength = length(camera.getPosition() - planePosition + Vector3d(0, 0, 2.6f));
DOFRenderer renderer(0.02, 100, focalLength);
float imageScalar = 1;
Texture image = renderer.renderImage(scene, camera, 1920 * imageScalar, 1080 * imageScalar);
image.save("result.png");
// Use post-processing Bloom effect
Bloom bloomEffect = Bloom(image.getImage(), 0.88f, image);
image.setTexture(bloomEffect.bloom(50, 20.0f, 0.5f));
image.save("resultWithBloom.png");
return 0;
}

60
bloom.cpp Normal file
View file

@ -0,0 +1,60 @@
#include <iostream>
#include <string>
#include <post_processing/bloom.h>
#include <shader/phongshader.h>
#include <shader/simpleshadowshader.h>
#include <light/pointlight.h>
#include "camera/perspectivecamera.h"
#include "renderer/simplerenderer.h"
#include "scene/simplescene.h"
#include "primitive/box.h"
#include "primitive/infiniteplane.h"
#include "primitive/sphere.h"
#include "primitive/triangle.h"
int main() {
SimpleScene scene;
scene.setBackgroundColor(Color(0, 0, 0));
// Add shaders
auto red = std::make_shared<SimpleShadowShader>(Color(1.0f, 0.3f, 0.2f));
auto gray = std::make_shared<SimpleShadowShader>(Color(0.78f, 0.78f, 0.78f));
auto blue = std::make_shared<SimpleShadowShader>(Color(0.2f, 0.3f, 1.0f));
auto orange = std::make_shared<PhongShader>(Color(1.0f, 0.64f, 0.0f), 1.0f, Color(1.0f, 1.0f, 1.0f), 1.0f, 25.0f);
scene.add(std::make_shared<Box>(Vector3d(5.0f, -5.0f, 0.0f), Vector3d(4.0f, 4.0f, 4.0f), red));
scene.add(std::make_shared<Box>(Vector3d(-5.0f, -3.0f, 1.0f), Vector3d(1.0f, 6.0f, 1.0f), blue));
scene.add(std::make_shared<Box>(Vector3d(-3.5f, 4.0f, -2.0f), Vector3d(2.0f, 2.0f, 2.0f), orange));
scene.add(std::make_shared<Sphere>(Vector3d(2.0f, 4.0f, 0.0f), 1.0f, orange));
scene.add(std::make_shared<PointLight>(Vector3d(0.0f, 0.0f, -11.0f), 100.0f));
// Set up the camera
PerspectiveCamera camera;
camera.setFovAngle(90.0f);
camera.setPosition(Vector3d(0.0f, 0.0f, -10.0f));
camera.setForwardDirection(Vector3d(0.0f, 0.0f, 1.0f));
camera.setUpDirection(Vector3d(0.0f, 1.0f, 0.0f));
// Render the scene
SimpleRenderer renderer;
Texture img = renderer.renderImage(scene, camera, 512, 512);
img.save("beforeBloom.png");
Bloom bloom = Bloom(img.getImage(), 0.88f, img);
img.setTexture(bloom.bloom(100, 300.0f, 1.5f));
img.save("afterBloom.png");
return 0;
}

View file

@ -1,21 +1,50 @@
#include <chrono>
#include <iostream>
#include <thread>
#include "cloudnoise.h"
#include "worleynoise.h"
#include "perlinnoise.h"
CloudNoise::CloudNoise(int size, unsigned int seed) : Noise(size)
CloudNoise::CloudNoise(int size, unsigned int seed) : Noise(size), worleyNoise1(WorleyNoise(std::min(LOWRES_SIZE, size), 3, seed)),
worleyNoise3(WorleyNoise(size, 15, seed)),
perlinNoise1(PerlinNoise(std::min(LOWRES_SIZE, size), 3, seed)),
perlinNoise2(PerlinNoise(size, 15, seed))
{
int minSize = std::min(32, size);
// Some worley noises
WorleyNoise worleyNoise1(minSize, 3, seed);
WorleyNoise worleyNoise3(size, 15, seed);
// Some perlin noises
PerlinNoise perlinNoise1(minSize, 3, seed);
PerlinNoise perlinNoise2(size, 15, seed);
auto start = std::chrono::high_resolution_clock::now();
// Generate the noise
for (int x = 0; x < size; x++)
int const nThreads = (int) std::thread::hardware_concurrency() - 1;
int threadSize = std::floor((float) size / (float) nThreads);
int remaining = size - nThreads * threadSize;
std::vector<std::thread> threads;
for (int n = 0; n < nThreads; n++)
{
threads.emplace_back(runCloudNoiseInThread, n * threadSize, threadSize, this);
}
renderNoiseThread(nThreads * threadSize, remaining);
// Rejoin the threads
for (int t = 0; t < nThreads; ++t)
{
threads[t].join();
}
// Duration of computation
auto stop = std::chrono::high_resolution_clock::now();
auto duration = std::chrono::duration_cast<std::chrono::seconds>(stop - start);
std::cout << "Finished computing Cloud noise for size " << size << " in "
<< duration.count() << " seconds" << std::endl;
}
void CloudNoise::runCloudNoiseInThread(int xOffset, int xSize, CloudNoise *noise)
{
noise->renderNoiseThread(xOffset, xSize);
}
void CloudNoise::renderNoiseThread(int xOffset, int xSize)
{
for (int x = xOffset; x < xOffset + xSize; x++)
{
for (int y = 0; y < size; y++)
{
@ -37,4 +66,4 @@ CloudNoise::CloudNoise(int size, unsigned int seed) : Noise(size)
}
}
}
}
}

View file

@ -3,6 +3,10 @@
#include "noise.h"
#include "worleynoise.h"
#include "perlinnoise.h"
int const LOWRES_SIZE = 32;
class CloudNoise : public Noise
{
@ -12,7 +16,20 @@ public:
* @param size
* @param seed 0 for random seed
*/
CloudNoise(int size, unsigned int seed = 0);
explicit CloudNoise(int size, unsigned int seed = 0);
void renderNoiseThread(int xOffset, int xSize);
private:
// Some worley noises
WorleyNoise worleyNoise1;
WorleyNoise worleyNoise3;
// Some perlin noises
PerlinNoise perlinNoise1;
PerlinNoise perlinNoise2;
static void runCloudNoiseInThread(int xOffset, int xSize, CloudNoise *noise);
};

View file

@ -1,5 +1,7 @@
#include <random>
#include <algorithm>
#include <thread>
#include <iostream>
#include "perlinnoise.h"
Vector3d PerlinNoise::randomGradient()
@ -72,6 +74,8 @@ PerlinNoise::PerlinNoise(int size, int gridSize, unsigned int seed) : Noise(size
void PerlinNoise::generateNoise()
{
auto start = std::chrono::high_resolution_clock::now();
// Generate gradients
gradients.clear();
gradients.resize(pow(gridSize, 3));
@ -81,15 +85,21 @@ void PerlinNoise::generateNoise()
}
// Generate each pixel
for (int x = 0; x < size; x++)
int const nThreads = (int) std::thread::hardware_concurrency() - 1;
int threadSize = std::floor((float) size / (float) nThreads);
int remaining = size - nThreads * threadSize;
std::vector<std::thread> threads;
for (int n = 0; n < nThreads; n++)
{
for (int y = 0; y < size; y++)
{
for (int z = 0; z < size; z++)
{
setNoise(x, y, z, getGradientValue(x, y, z));
}
}
threads.emplace_back(runPerlinNoiseInThread, n * threadSize, threadSize, this);
}
renderNoiseThread(nThreads * threadSize, remaining);
// Rejoin the threads
for (int t = 0; t < nThreads; ++t)
{
threads[t].join();
}
// Normalize cloudNoise map to [0, 1]
@ -100,6 +110,32 @@ void PerlinNoise::generateNoise()
{
value = (value - min) / (max - min);
});
// Duration of computation
auto stop = std::chrono::high_resolution_clock::now();
auto duration = std::chrono::duration_cast<std::chrono::seconds>(stop - start);
std::cout << "Finished computing Perlin noise for size " << size << " and grid size " << gridSize << " in "
<< duration.count() << " seconds" << std::endl;
}
void PerlinNoise::runPerlinNoiseInThread(int xOffset, int xSize, PerlinNoise *noise)
{
noise->renderNoiseThread(xOffset, xSize);
}
void PerlinNoise::renderNoiseThread(int xOffset, int xSize)
{
for (int x = xOffset; x < xOffset + xSize; x++)
{
for (int y = 0; y < size; y++)
{
for (int z = 0; z < size; z++)
{
setNoise(x, y, z, getGradientValue(x, y, z));
}
}
}
}
float PerlinNoise::getCornerValue(Vector3d position, Vector3d corner)

View file

@ -16,6 +16,7 @@ public:
*/
PerlinNoise(int size, int gridSize, unsigned int seed = 0);
void renderNoiseThread(int xOffset, int xSize);
private:
void generateNoise();
std::normal_distribution<float> distribution;
@ -29,6 +30,9 @@ private:
float getGradientValue(int x, int y, int z);
float getCornerValue(Vector3d position, Vector3d corner);
static void runPerlinNoiseInThread(int xOffset, int xSize, PerlinNoise *noise);
};

View file

@ -2,9 +2,15 @@
#include <iostream>
#include <algorithm>
#include <set>
#include <thread>
#include "worleynoise.h"
#include "common/vector3d.h"
void WorleyNoise::runWorleyNoiseInThread(int xOffset, int xSize, WorleyNoise *noise)
{
noise->renderNoiseThread(xOffset, xSize);
}
void WorleyNoise::generateNoise()
{
auto start = std::chrono::high_resolution_clock::now();
@ -36,7 +42,43 @@ void WorleyNoise::generateNoise()
noiseMap.clear();
noiseMap.resize(size * size * size);
for (int x = 0; x < size; x++)
int const nThreads = (int) std::thread::hardware_concurrency() - 1;
int threadSize = std::floor((float) size / (float) nThreads);
int remaining = size - nThreads * threadSize;
std::vector<std::thread> threads;
for (int n = 0; n < nThreads; n++)
{
threads.emplace_back(runWorleyNoiseInThread, n * threadSize, threadSize, this);
}
renderNoiseThread(nThreads * threadSize, remaining);
// Rejoin the threads
for (int t = 0; t < nThreads; ++t)
{
threads[t].join();
}
// Normalize cloudNoise map to [0, 1]
float min = *std::min_element(noiseMap.begin(), noiseMap.end());
float max = *std::max_element(noiseMap.begin(), noiseMap.end());
std::for_each(noiseMap.begin(), noiseMap.end(), [min, max](float &value)
{
value = (value - min) / (max - min);
});
// Duration of computation
auto stop = std::chrono::high_resolution_clock::now();
auto duration = std::chrono::duration_cast<std::chrono::seconds>(stop - start);
std::cout << "Finished computing Worley noise for size " << size << " and " << numberOfPoints << " points in "
<< duration.count() << " seconds" << std::endl;
}
void WorleyNoise::renderNoiseThread(int xOffset, int xSize)
{
for (int x = xOffset; x < xOffset + xSize; x++)
{
for (int y = 0; y < size; y++)
{
@ -48,22 +90,6 @@ void WorleyNoise::generateNoise()
}
}
}
// Normalize getNoise map to [0, 1]
float min = *std::min_element(noiseMap.begin(), noiseMap.end());
float max = *std::max_element(noiseMap.begin(), noiseMap.end());
for (int i = 0; i < noiseMap.size(); i++)
{
noiseMap[i] = (noiseMap[i] - min) / (max - min);
}
// Duration of computation
auto stop = std::chrono::high_resolution_clock::now();
auto duration = std::chrono::duration_cast<std::chrono::seconds>(stop - start);
std::cout << "Finished computing Worley noise for size " << size << " and " << numberOfPoints << " points in "
<< duration.count() << " seconds" << std::endl;
}
WorleyNoise::WorleyNoise(int size, int numberOfPoints, unsigned int seed) : numberOfPoints(numberOfPoints), Noise(size)

View file

@ -18,6 +18,8 @@ public:
*/
WorleyNoise(int size, int numberOfPoints, unsigned int seed = 0);
void renderNoiseThread(int xOffset, int xSize);
protected:
int numberOfPoints;
std::vector<Vector3d> points; // 3D-Array, each cell represents a subcell. There are numberOfPoints^3 subcells.
@ -32,6 +34,8 @@ protected:
void generateNoise();
std::vector<Vector3d> getSubcellPoints(Vector3d point);
static void runWorleyNoiseInThread(int xOffset, int xSize, WorleyNoise *noise);
};

View file

@ -85,7 +85,7 @@ Color Texture::color(Vector2d const &surfacePosition, bool interpolate) const {
return color(surfacePosition.u, surfacePosition.v, interpolate);
}
CImg<float> Texture::getImage() {
CImg<float>& Texture::getImage() {
return image_;
}

View file

@ -33,7 +33,7 @@ public:
Color color(float u, float v, bool interpolate = true) const;
Color color(Vector2d const &surfacePosition, bool interpolate = true) const;
CImg<float> getImage();
CImg<float>& getImage();
private:
CImg<float> image_;

2667
data/FancyPlane/Plane.obj Normal file

File diff suppressed because it is too large Load diff

View file

@ -50,9 +50,9 @@ int main()
// scene.add(std::make_shared<Box>(Vector3d(9.0f, 3.0f, 12.0f), Vector3d(3.0f, 3.0f, 3.0f), boxShader1));
// Add floor
// auto floorShader = std::make_shared<SimpleShadowShader>(Color(0.9f, 0.9f, 0.9f));
// scene.add(std::make_shared<InfinitePlane>(Vector3d(0.0f, 0.0f, 0.0f), Vector3d(0.0f, 1.0f, 0.0f),
// floorShader));
auto floorShader = std::make_shared<SimpleShadowShader>(Color(0.9f, 0.9f, 0.9f));
scene.add(std::make_shared<InfinitePlane>(Vector3d(0.0f, 0.0f, 0.0f), Vector3d(0.0f, 1.0f, 0.0f),
floorShader));
// Add box for volume shader
auto cloudSettings = CloudSettings();
@ -72,7 +72,7 @@ int main()
// Render the scene
SuperRenderer sr;
sr.setSuperSamplingFactor(1);
sr.renderImage(scene, camera, 512, 512).save("result.png");
sr.renderImage(scene, camera, 2048, 2048).save("result.png");
return 0;
}

View file

@ -18,7 +18,7 @@
int main() {
// Let's create a simple cornell box scene...
SimpleScene scene;
scene.setEnvironmentMap(std::make_shared<Texture>("data/lion_env.png"));
scene.setEnvironmentMap(std::make_shared<Texture>("../data/lion_env.png"));
auto mirror = std::make_shared<MirrorShader>();
auto glass = std::make_shared<RefractionShader>(1.31f, 1.0f);

View file

@ -44,8 +44,6 @@ int main() {
auto blueMetallic = std::make_shared<BrdfShader>("../data/blue-metallic-paint.binary", Color(7.0f, 7.0f, 7.0f));
auto darkRed = std::make_shared<BrdfShader>("../data/dark-red-paint.binary", Color(7.0f, 7.0f, 7.0f));
// DOF Shader
bool dofShader = true;
// Set up the walls
@ -88,14 +86,10 @@ int main() {
// Use DOFRenderer to raytrace !!! careful more pixels lead to insane rendering times
Texture image = renderer.renderImage(scene, camera, 1024, 1024);
// Use post-processing Bloom effect
Bloom bloomEffect = Bloom(image.getImage());
Texture imageWithBloom = image;
imageWithBloom.setTexture(bloomEffect.bloom(0.55f, 5, 10.0f, 0.06f));
// save images
image.save("result.png");
image.save("resultWithBloom");
return 0;
}

View file

@ -2,36 +2,27 @@
#include <iostream>
#include "bloom.h"
Bloom::Bloom(CImg<float> image) : image(image) {}
Bloom::Bloom(CImg<float> &image, float threshold, Texture& thresholdImg) : image(image), threshold(threshold) {}
CImg<float> Bloom::bloom(float threshold, int kernelSize, float sigma, float intensity) {
// Apply threshold to image
//CImg<float> brightPixels = image_.get_threshold(threshold);
//brightPixels.save("brightpixels.png");
CImg<float> Bloom::bloom(int kernelSize, float sigma, float intensity) {
CImg<float> brightPixels = image.get_threshold(threshold);
// Apply gaussian blur to bright pixels
CImg<float> kernel = computeGaussianKernel(kernelSize, sigma);
CImg<float> blurred = convolution(image, kernel);
for(int i = 0; i < 3; i++){
kernel = computeGaussianKernel(kernelSize, sigma);
blurred = convolution(image, kernel);
blurred *= intensity;
}
blurred *= intensity;
// Add blurred image back to original image
cimg_forXYC(image, x, y, c) {
float value = image(x,y,0,c) + blurred(x,y,0,c);
image(x,y,0,c) = (value > 1.0f) ? 1.0f : value;
}
float value = image(x, y, 0, c) + blurred(x, y, 0, c);
image(x, y, 0, c) = (value > 1.0f) ? 1.0f : value;
}
return image;
}
void Bloom::gaussianBlur(int kernelSize, float sigma) {
CImg<float> kernel = computeGaussianKernel(kernelSize, sigma);
image = convolution(image, kernel);
}
// Function to compute Gaussian kernel
CImg<float> Bloom::computeGaussianKernel(int kernelSize, float sigma) {
@ -44,7 +35,7 @@ CImg<float> Bloom::computeGaussianKernel(int kernelSize, float sigma) {
for (i = 0; i < kernelSize; i++) {
for (j = 0; j < kernelSize; j++) {
kernel(i, j) = exp(-0.5f * (pow((i - kernelSize / 2.f) / sigma, 2.f) +
pow((j - kernelSize / 2.f) / sigma, 2.f))) / (2 * M_PI * sigma * sigma);
pow((j - kernelSize / 2.f) / sigma, 2.f))) / (2 * M_PI * sigma * sigma);
sum += kernel(i, j);
}
}
@ -67,22 +58,18 @@ CImg<float> Bloom::convolution(CImg<float> &img, CImg<float> &kernel) {
// Perform convolution
cimg_forXYC(img, i, j, c) {
sum = 0;
cimg_forY(kernel, m) {
cimg_forX(kernel, n) {
int x = i + n - kernelRadius;
int y = j + m - kernelRadius;
if(x >= 0 && x < imgCols && y >= 0 && y < imgRows){
sum += img(x, y, 0, c) * kernel(n, m);
}
sum = 0;
cimg_forY(kernel, m) {
cimg_forX(kernel, n) {
int x = i + n - kernelRadius;
int y = j + m - kernelRadius;
if (x >= 0 && x < imgCols && y >= 0 && y < imgRows) {
sum += img(x, y, 0, c) * kernel(n, m);
}
}
}
result(i, j, 0, c) = sum;
}
}
result(i, j, 0, c) = sum;
}
return result;
}
void Bloom::scaleBrightness(float scale) {
image *= scale;
}

View file

@ -8,19 +8,17 @@
class Bloom {
public:
Bloom(CImg<float> image);
CImg<float> bloom(float threshold, int kernelSize, float sigma, float intensity);
Bloom(CImg<float>& image, float threshold, Texture& thresholdImg);
CImg<float> bloom(int kernelSize, float sigma, float intensity);
private:
void scaleBrightness(float scale);
void gaussianBlur(int kernelSize, float sigma);
CImg<float> convolution(CImg<float> &img, CImg<float> &kernel);
CImg<float> computeGaussianKernel(int kernelSize, float sigma);
CImg<float> image;
float threshold;
};

View file

@ -3,7 +3,6 @@
#include <chrono>
#include "depthoffieldrenderer.h"
#include <iomanip>
#include "post_processing/bloom.h"
DOFRenderer::DOFRenderer(float _aperture, int _secondaryRayCount, float _focalLength) : aperture(_aperture),
@ -112,13 +111,6 @@ Texture DOFRenderer::renderImage(Scene const &scene, Camera const &camera, int w
std::cout << "Paths: " << rays << std::endl;
std::cout << "Paths per second: " << std::fixed << std::setprecision(0) << rays / seconds << std::endl;
// Post-processing
// Bloom shader
image.save("original.png");
Bloom bloomEffect = Bloom(image.getImage());
image.setTexture(bloomEffect.bloom(0.55f, 5, 10.0f, 0.06f));
return image;
}

View file

@ -8,42 +8,42 @@ BrdfShader::BrdfShader(char const *fileName, Color const &scale)
: scale(scale), brdf(std::make_unique<BRDFRead>(fileName)) {}
Color BrdfShader::shade(Scene const &scene, Ray const &ray) const {
// Calculate theta and phi
float thetaIn = std::acos(dotProduct(-ray.normal, ray.direction));
float phiIn = 0.0f;
// Calculate theta and phi
float thetaIn = std::acos(dotProduct(-ray.normal, ray.direction));
float phiIn = 0.0f;
// Derive local coordinate system
Vector3d const x = crossProduct(-ray.direction, ray.normal);
Vector3d const y = crossProduct(ray.normal, x);
// Derive local coordinate system
Vector3d const x = crossProduct(-ray.direction, ray.normal);
Vector3d const y = crossProduct(ray.normal, x);
// Accumulate the light over all light sources
Color illuminationColor;
for (const auto &light : scene.lights()) {
Light::Illumination illum;
illum = light->illuminate(scene, ray);
// Accumulate the light over all light sources
Color illuminationColor;
for (const auto &light : scene.lights()) {
Light::Illumination illum;
illum = light->illuminate(scene, ray);
// Diffuse term
float const cosine = dotProduct(-illum.direction, ray.normal);
if (cosine > 0) {
Color color;
// Diffuse term
float const cosine = dotProduct(-illum.direction, ray.normal);
if (cosine > 0) {
Color color;
// Avoid numeric instability
if (cosine < 1) {
float const thetaOut = std::acos(cosine);
// Avoid numeric instability
if (cosine < 1) {
float const thetaOut = std::acos(cosine);
// Project outgoing vector into local coordinate system
Vector3d const c = crossProduct(-illum.direction, ray.normal);
float const phiOut = std::atan2(dotProduct(c, y), dotProduct(c, x));
// Project outgoing vector into local coordinate system
Vector3d const c = crossProduct(-illum.direction, ray.normal);
float const phiOut = std::atan2(dotProduct(c, y), dotProduct(c, x));
color = Color(brdf->lookupBrdfValues(thetaIn, phiIn, thetaOut, phiOut));
} else {
color = Color(brdf->lookupBrdfValues(thetaIn, phiIn, 0, 0));
}
color = Color(brdf->lookupBrdfValues(thetaIn, phiIn, thetaOut, phiOut));
} else {
color = Color(brdf->lookupBrdfValues(thetaIn, phiIn, 0, 0));
}
// Calculate colors
Color const diffuseColor = scale * color * cosine;
illuminationColor += diffuseColor * illum.color;
// Calculate colors
Color const diffuseColor = scale * color * cosine;
illuminationColor += diffuseColor * illum.color;
}
}
}
return illuminationColor;
return illuminationColor;
}

View file

@ -69,7 +69,7 @@ bool CloudShader::isTransparent() const
}
CloudShader::CloudShader(const CloudSettings &settings) : settings(settings),
cloudNoise(CloudNoise(NOISE_SIZE, settings.seed))
cloudNoise(CloudNoise(settings.noiseSize, settings.seed))
{
cloudNoise.invert = true;
}

View file

@ -7,11 +7,11 @@
#include "primitive/primitive.h"
#include "common/noise/worleynoise.h"
int const NOISE_SIZE = 64;
float const TRANSMITTANCE_BREAK = 0.0001f; // If transmittance goes below this limit, the cloud is considered opaque
struct CloudSettings
{
int noiseSize = 128; // 64
unsigned int seed = 0; // 0 for random seed
float densitySteps = .2f; // .2f
float scale = 30; // 30